小兔的棋盘
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 11339 Accepted Submission(s): 5717
Problem Description
小兔的叔叔从外面旅游回来给她带来了一个礼物,小兔高兴地跑回自己的房间,拆开一看是一个棋盘,小兔有所失望。不过没过几天发现了棋盘的好玩之处。从起点(0,0)走到终点(n,n)的最短路径数是C(2n,n),现在小兔又想如果不穿越对角线(但可接触对角线上的格点),这样的路径数有多少?小兔想了很长时间都没想出来,现在想请你帮助小兔解决这个问题,对于你来说应该不难吧!
Input
每次输入一个数n(1<=n<=35),当n等于-1时结束输入。
Output
对于每个输入数据输出路径数,具体格式看Sample。
Sample Input
1 3 12 -1
Sample Output
1 1 2 2 3 10 3 12 416024
维基百科对卡塔兰数的解析:
明安图《割圜密率捷法》卷三 “卡塔兰数”书影
卡塔兰数
卡塔兰数是组合数学中一个常在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰(1814–1894)命名。历史上,清代数学家明安图(1692年-1763年)在其《割圜密率捷法》最早用到“卡塔兰数”,远远早于卡塔兰[1][2][3]。有中国学者建议将此数命名为“明安图数”或“明安图-卡塔兰数”[4]。
卡塔兰数的一般项公式为
前20项为(OEIS中的数列A000108):1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190
目录
[隐藏]
性质[编辑]
Cn的另一个表达形式为
所以,Cn是一个自然数;这一点在先前的通项公式中并不显而易见。这个表达形式也是André对前一公式证明的基础。(见下文的第二个证明。)
它也满足
这提供了一个更快速的方法来计算卡塔兰数。
卡塔兰数的渐近增长为
它的含义是当n → ∞时,左式除以右式的商趋向于1。(这可以用n!的斯特灵公式来证明。)
所有的奇卡塔兰数Cn都满足
。所有其他的卡塔兰数都是偶数。
应用
组合数学中有非常多的组合结构可以用卡塔兰数来计数。在Richard P. Stanley的Enumerative Combinatorics: Volume 2一书的习题中包括了66个相异的可由卡塔兰数表达的组合结构。以下用n=3和n=4举若干例:
- Cn表示长度2n的dyck word的个数。Dyck word是一个有n个X和n个Y组成的字串,且所有的前缀字串皆满足X的个数大于等于Y的个数。以下为长度为6的dyck words:
XXXYYY XYXXYY XYXYXY XXYYXY XXYXYY
- 将上例的X换成左括号,Y换成右括号,Cn表示所有包含n组括号的合法运算式的个数:
((())) ()(()) ()()() (())() (()())
- Cn表示有n个节点组成不同构二叉树的方案数。下图中,n等于3,圆形表示节点,月牙形表示什么都没有。
- Cn表示有2n+1个节点组成不同构满二叉树(full binary tree)的方案数。下图中,n等于3,圆形表示内部节点,月牙形表示外部节点。本质同上。
证明:
令1表示进栈,0表示出栈,则可转化为求一个2n位、含n个1、n个0的二进制数,满足从左往右扫描到任意一位时,经过的0数不多于1数。显然含n个1、n个0的2n位二进制数共有
个,下面考虑不满足要求的数目。
考虑一个含n个1、n个0的2n位二进制数,扫描到第2m+1位上时有m+1个0和m个1(容易证明一定存在这样的情况),则后面的0-1排列中必有n-m个1和n-m-1个0。将2m+2及其以后的部分0变成1、1变成0,则对应一个n+1个0和n-1个1的二进制数。反之亦然(相似的思路证明两者一一对应)。
从而
。证毕。
- Cn表示所有在n × n格点中不越过对角线的单调路径的个数。一个单调路径从格点左下角出发,在格点右上角结束,每一步均为向上或向右。计算这种路径的个数等价于计算Dyck word的个数:X代表“向右”,Y代表“向上”。下图为n = 4的情况:
- Cn表示对{1, ..., n}依序进出栈的置换个数。一个置换w是依序进出栈的当S(w) = (1, ..., n),其中S(w)递归定义如下:令w = unv,其中n为w的最大元素,u和v为更短的数列;再令S(w) = S(u)S(v)n,其中S为所有含一个元素的数列的单位元。
- Cn表示集合{1, ..., n}的不交叉划分的个数.那么, Cn永远不大于第n项贝尔数. Cn也表示集合{1, ..., 2n}的不交叉划分的个数,其中每个段落的长度为2。综合这两个结论,可以用数学归纳法证明:在 魏格纳半圆分布定律 中度数大于2的情形下,所有 自由的 累积量s 为零。 该定律在 自由概率论 和 随机矩阵 理论中非常重要。
- Cn表示用n个长方形填充一个高度为n的阶梯状图形的方法个数。下图为n = 4的情况:
- Cn表示表为2×n的矩阵的标准杨氏矩阵的数量。 也就是说,它是数字 1, 2, ..., 2n 被放置在一个2×n的矩形中并保证每行每列的数字升序排列的方案数。同样的,该式可由勾长公式的一个特殊情形推导得出。
- Cn表示n个无标号物品的半序的个数。
汉克尔矩阵[编辑]
无论n的取值为多少,n×n的汉克尔矩阵:
的行列式为1。例如,n = 4 时我们有
。
进一步,无论n的取值为多少,如果矩阵被移动成
,它的行列式仍然为1。 例如,n = 4 时我们有
。
同时,这两种情形合在一起唯一定义了卡塔兰数。
这题就是” Cn表示所有在n × n格点中不越过对角线的单调路径的个数。”
对于HDOJ2067来讲,如果使用公式直接打表,会发现是溢出的情况,这是就需要使用递推的方式了
(1)h(n)=h(0)×h(n-1)+h(1)×h(n-2)+…+h(n-1)×h(0) (n≥2)
(2)h(n)=((4n-2)/(n+1))×h(n-1)
(3)h(n)=C(2n,n)/(n+1) (n=1,2,3,…)
下面AC代码:
import java.util.Scanner;
public class Main{
private static Scanner scanner;
private static long arr[];
public static void main(String[] args) {
scanner = new Scanner(System.in);
int count = 1;
while (scanner.hasNext()) {
int n = scanner.nextInt();
if(n == -1){
break;
}
arr = new long[36];
arr[0] = 1;
founction2();// 方法2--递推
// founction1();//方法1--公式(溢出)
System.out.println(count+" "+n+" "+arr[n] * 2);
count++;
}
}
public static void founction2() {
for (int i = 1; i < arr.length; i++) {
for (int j = 0; j < i; j++) {
arr[i] += arr[j] * arr[i - j - 1];
}
}
}
public static void founction1(){
for (int i = 1; i < arr.length; i++) {
arr[i] = (fac(i*2))/(fac(i+1)*fac(i));
}
}
//计算阶乘
public static long fac(int n) {
long sum = 1;
for (int i = 1; i <= n; i++) {
sum *= i;
}
return sum;
}
}