首页 > 其他分享 >COMP3357 Exercise

COMP3357 Exercise

时间:2023-04-04 22:03:08浏览次数:60  
标签:Pr ... gcd pmod COMP3357 mod Exercise equiv

老师今天特意强调了考试,并且讲解了这些题,让人很难不怀疑......!!
在这里每道题都认真研究一下,做个记录

RSA

Adapted RSA with CRT


  • (a)
    很明显,就不多赘述了
  • (b)
    由于 \(g_1=g^{r_1(p-1)}\)
    有 \(g_1\equiv g^{r_1(p-1)}\pmod(p)\),根据费马小定理,\(g_1\equiv 1\pmod{p}\),即 \(g_1-1\equiv 0\pmod{p}\)
    所以 \(p|(g_1-1)\)
    我们计算 \(\gcd(g_1-1, N)\)
    • 若 \(\gcd(g_1-1, N)=p\)
      这样,我们成功的找到了 \(N\) 的 factorization,破解 \(m\) 易如反掌
    • 若 \(\gcd(g_1-1, N)=pq=N\)
      这意味着 \(g_1-1\equiv 0\pmod{q}\)

RSA with reused \(m, e\)

Bob 用不同的 \(e_1, e_2\) 加密了相同的信息 \(m\),其中 \(\gcd(e_1, e_2)=1\)
Eve 截获了这两条密文 \(c_1=[m^{e_1}\mod N], c_2=[m^{e_2}\mod N]\)
请在不找出 \(N\) 的 factorization 的情况下破解 \(m\)

根据 裴蜀定理 (Bezout Identity),我们有 \(Xe_1+Ye_2=\gcd(e_1, e_2)=1\)
且,通过扩展欧几里得定理可以找到满足条件的一组 \(X, Y\)
计算 \(c_1^Xc_2^Y \mod N\) 即可破解 \(m\):
\(c_1^Xc_2^Y\equiv m^{Xe_1}m^{Ye_2}\equiv m^{Xe_1+Ye_2}\equiv m\pmod{N}\)

More generally, if Bob encrypts a single message using several exponents \(e_1, e_2,...,e_n\), then Eve can recover the plaintext if \(\gcd(e_1, e_2, ..., e_n)=1\).
The moral is that Alice should use at most one encryption exponent for a given modulus.


Public Key Encryption

Adapted El Gamel Encryption

这道题没见过真有点想不出来吧......

  • 发现 \(c_2=h^r+m_b\) 使用了 \(+\),不属于 \(G\) 的群运算,因此 it's not necessary that \(c_2\in G\)
  • 然而,由于 \(h^r\in G\),我们能够保证 \([c_2-m_b\mod{p}]\in G\)
  • 根据题意 \(p-1=2q\),即 \(|\Z_p^*|=2|G|\) (这来自结论:对于奇质数 \(p\) 与集合 \(\{1,2,...,p-1\}\),集合中模 \(p\) 的二次剩余与二次非剩余数量相等)
    又 \([c_2-m\mod{p}] \in \Z_p^*\) (严格来说是 \(\Z_p\),但是 \([c_2-m\mod{p}]=0\) 不可能成立)
    因此,对于随机的 \(m\),\([c_2-m\mod{p}]\in G\) 的概率是 \(1/2\)
  • 对于敌手输出的 \(m_0, m_1\),挑战者选择加密 \(m_b\):
    那么 \(\Pr[[c_2-m_b\mod{p}]\in G]=1\), 而 \(Pr[[c_2-m_{1-b}\mod{p}]\in G]=1/2\) (\(m_{1-b}\) 是随机选取的)
  • 敌手只需要分别计算上式,若 \([c_2-m_0\mod{p}]\in G\),输出 \(0\); 若 \([c_2-m_1\mod{p}]\in G\),输出 \(1\); 若两者都 \(\in G\),则输出一个 random guess
    敌手获得胜利的概率是 \(\Pr[\mathtt{PubK}^{\mathtt{eav}}_{\Pi, \mathscr{A}}(n)=1]=1/2+1/2\times 1/2=3/4\)

\(3/4\) 并不是一个可忽略的概率,因此这个加密方案不是 CPA-secure 的


One-way Function

Hard-Core Predicates and Pseudorandom Generators


之前提过,one-way function 并不能保证部分信息的泄露,其就算有硬核谓词也只保证有一部分信息不会泄露

\(G(x_1, x_2)\) 很明显是一个单向函数:
前半部分保证了 \(x_1\) 的单向性 (硬核谓词 \(hc(x_1, x_2)\) 只能从单向函数 \(g\) 上下手了)
后半部分是 \(n/2\) 个连续的 \(0\),保证了 \(x_2\) 的信息绝不会被泄露 (结果根本就与 \(x_2\) 无关)
然而,由于这 \(n/2\) 个 \(0\) 的存在,可以很容易将其与 random string 区别开,因此其不能作为 PRG

标签:Pr,...,gcd,pmod,COMP3357,mod,Exercise,equiv
From: https://www.cnblogs.com/VeniVidiVici/p/17288051.html

相关文章

  • # Discrete Mathematics: Exercises part 1.
    DiscreteMathematics:Exercisespart1.Inclusion-exclusionmethodsHowmanypositiveintegerslessthan10,000arenotthesecondorhigherpowerofanintege......
  • [Typescript] Builder pattern - 05 Exercise
    classOverriden<TMapextendsobject={}>{privatemap:TMap;constructor(obj:TMap){this.map=obj;}build(){returnthis.map}me......
  • Exercise - Explore the Learn sandbox
    Exercise-ExploretheLearnsandbox-Training|MicrosoftLearnSandboxactivated!Timeremaining: 49minYouhaveused1of10sandboxesfortoday.Mores......
  • luogu P6276 [USACO20OPEN]Exercise P
    题面传送门首先考虑一个固定排列的答案是什么。考虑它的若干置换环,应该是所有环环长的LCM,所有数都会转回本来的位置。现在变成计算所有环的环长的LCM的积的问题。注意......
  • bash exercise
    3.5.2TildeExpansionecho"~"#onlybeginwithanunquotedcharacterisconsideredatilde-prefixecho~toucht.txtls~+/t.txt#usetheshell......
  • Two Exercises of Gramian
    目录TwoExercisesofGramian"Gramiandeterminesshape""Almostorthonormal"TwoExercisesofGramian"Gramiandeterminesshape"Proposition.Let\(\{v_1,\cdots,......
  • Computer Vision Exercise
    计算机视觉练习题LocalfeatureHarrisCornerSolution\[\begin{array}{l}\text{(1)}I_{x}=\left[\begin{array}{ccc}8&10&12\\16&14&12\\18&10&1......
  • Elements of Information Theory: Exercises
    ElementsofInformationTheory:Exercises2.2Entropyoffunctions.Let\(X\)bearandomvariabletakingonafinitenumberofvalues.Whatisthe(general)i......
  • Math Exercise.
    1.设$p,q$ 均为大于3的素数,则使$p^2+5pq+4q^2$ 为完全平方数的素数对的个数为( )A.1   B.2    C.3    D.42.对任意的整数x,y,定义$x@y=x+y-xy$,则......
  • INFO213 In class exercise - knn (课堂练习笔记)
    KNNLetusimplementtheKNNalgorithmusingasetofexampledataaboutfavoriteprogramminglanguagesfordatascientistsindifferentcities.cities=[(-8......