访问数据库
import os import pandas as pd # 修改工作路径到指定文件夹 #os.chdir("D:/chapter11/demo") # 第一种连接方式 #from sqlalchemy import create_engine #engine = create_engine('mysql+pymysql://root:123@192.168.31.140:3306/test?charset=utf8') #sql = pd.read_sql('all_gzdata', engine, chunksize = 10000) # 第二种连接方式 import pymysql as pm con = pm.connect(host='localhost',user='root',password='123456',database='test',charset='utf8') data = pd.read_sql('select * from all_gzdata',con=con) con.close() #关闭连接 # 保存读取的数据 data.to_csv("D:\\360MoveData\\Users\\86130\\Documents\\Tencent Files\\2268756693\\FileRecv\\all_gzdata.csv", index=False, encoding='utf-8')
网页类型设计
import pandas as pd from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://root:123456@127.0.0.1:3306/test?charset=utf8') sql = pd.read_sql('all_gzdata', engine, chunksize = 10000) # 分析网页类型 counts = [i['fullURLId'].value_counts() for i in sql] #逐块统计 counts = counts.copy() counts = pd.concat(counts).groupby(level=0).sum() # 合并统计结果,把相同的统计项合并(即按index分组并求和) counts = counts.reset_index() # 重新设置index,将原来的index作为counts的一列。 counts.columns = ['index', 'num'] # 重新设置列名,主要是第二列,默认为0 counts['type'] = counts['index'].str.extract('(\d{3})') # 提取前三个数字作为类别id counts_ = counts[['type', 'num']].groupby('type').sum() # 按类别合并 counts_.sort_values(by='num', ascending=False, inplace=True) # 降序排列 counts_['ratio'] = counts_.iloc[:,0] / counts_.iloc[:,0].sum() print(counts_)
num ratio type 101 411665 0.491570 199 201426 0.240523 107 182900 0.218401 301 18430 0.022007 102 17357 0.020726 106 3957 0.004725 103 1715 0.002048
知识类型内部统计
# 因为只有107001一类,但是可以继续细分成三类:知识内容页、知识列表页、知识首页 def count107(i): #自定义统计函数 j = i[['fullURL']][i['fullURLId'].str.contains('107')].copy() # 找出类别包含107的网址 j['type'] = None # 添加空列 j['type'][j['fullURL'].str.contains('info/.+?/')]= '知识首页' j['type'][j['fullURL'].str.contains('info/.+?/.+?')]= '知识列表页' j['type'][j['fullURL'].str.contains('/\d+?_*\d+?\.html')]= '知识内容页' return j['type'].value_counts() # 注意:获取一次sql对象就需要重新访问一下数据库(!!!) #engine = create_engine('mysql+pymysql://root:123456@127.0.0.1:3306/test?charset=utf8') sql = pd.read_sql('all_gzdata', engine, chunksize = 10000) counts2 = [count107(i) for i in sql] # 逐块统计 counts2 = pd.concat(counts2).groupby(level=0).sum() # 合并统计结果 print(counts2) #计算各个部分的占比 res107 = pd.DataFrame(counts2) # res107.reset_index(inplace=True) res107.index.name= '107类型' res107.rename(columns={'type':'num'}, inplace=True) res107['比例'] = res107['num'] / res107['num'].sum() res107.reset_index(inplace = True) print(res107)
知识内容页 164243 知识列表页 9656 知识首页 9001 Name: type, dtype: int64 107类型 num 比例 0 知识内容页 164243 0.897993 1 知识列表页 9656 0.052794 2 知识首页 9001 0.049213
统计带“?”的数据
def countquestion(i): # 自定义统计函数 j = i[['fullURLId']][i['fullURL'].str.contains('\?')].copy() # 找出类别包含107的网址 return j # 注意获取一次sql对象就需要重新访问一下数据库 engine = create_engine('mysql+pymysql://root:123456@127.0.0.1:3306/test?charset=utf8') sql = pd.read_sql('all_gzdata', engine, chunksize = 10000) counts3 = [countquestion(i)['fullURLId'].value_counts() for i in sql] counts3 = pd.concat(counts3).groupby(level=0).sum() print(counts3) # 求各个类型的占比并保存数据 df1 = pd.DataFrame(counts3) df1['perc'] = df1['fullURLId']/df1['fullURLId'].sum()*100 df1.sort_values(by='fullURLId',ascending=False,inplace=True) print(df1.round(4))
101003 47 102002 25 107001 346 1999001 64718 301001 356 Name: fullURLId, dtype: int64 fullURLId perc 1999001 64718 98.8182 301001 356 0.5436 107001 346 0.5283 101003 47 0.0718 102002 25 0.0382
统计199类型中的具体类型占比
def page199(i): #自定义统计函数 j = i[['fullURL','pageTitle']][(i['fullURLId'].str.contains('199')) & (i['fullURL'].str.contains('\?'))] j['pageTitle'].fillna('空',inplace=True) j['type'] = '其他' # 添加空列 j['type'][j['pageTitle'].str.contains('法律快车-律师助手')]= '法律快车-律师助手' j['type'][j['pageTitle'].str.contains('咨询发布成功')]= '咨询发布成功' j['type'][j['pageTitle'].str.contains('免费发布法律咨询' )] = '免费发布法律咨询' j['type'][j['pageTitle'].str.contains('法律快搜')] = '快搜' j['type'][j['pageTitle'].str.contains('法律快车法律经验')] = '法律快车法律经验' j['type'][j['pageTitle'].str.contains('法律快车法律咨询')] = '法律快车法律咨询' j['type'][(j['pageTitle'].str.contains('_法律快车')) | (j['pageTitle'].str.contains('-法律快车'))] = '法律快车' j['type'][j['pageTitle'].str.contains('空')] = '空' return j # 注意:获取一次sql对象就需要重新访问一下数据库 #engine = create_engine('mysql+pymysql://root:123456@127.0.0.1:3306/test?charset=utf8') sql = pd.read_sql('all_gzdata', engine, chunksize = 10000)# 分块读取数据库信息 #sql = pd.read_sql_query('select * from all_gzdata limit 10000', con=engine) counts4 = [page199(i) for i in sql] # 逐块统计 counts4 = pd.concat(counts4) d1 = counts4['type'].value_counts() print(d1) d2 = counts4[counts4['type']=='其他'] print(d2) # 求各个部分的占比并保存数据 df1_ = pd.DataFrame(d1) df1_['perc'] = df1_['type']/df1_['type'].sum()*100 df1_.sort_values(by='type',ascending=False,inplace=True) print(df1_)
法律快车-律师助手 49894 法律快车法律咨询 6421 咨询发布成功 5220 快搜 1943 法律快车 818 其他 359 法律快车法律经验 59 空 4 Name: type, dtype: int64 fullURL \ 2631 http://www.lawtime.cn/spelawyer/index.php?py=g... 2632 http://www.lawtime.cn/spelawyer/index.php?py=g... 1677 http://m.baidu.com/from=844b/bd_page_type=1/ss... 4303 http://m.baidu.com/from=0/bd_page_type=1/ssid=... 3673 http://www.lawtime.cn/lawyer/lll25879862593080... ... ... 4829 http://www.lawtime.cn/spelawyer/index.php?m=se... 4837 http://www.lawtime.cn/spelawyer/index.php?m=se... 4842 http://www.lawtime.cn/spelawyer/index.php?m=se... 8302 http://www.lawtime.cn/spelawyer/index.php?m=se... 5034 http://www.baidu.com/link?url=O7iBD2KmoJdkHWTZ... pageTitle type 2631 个旧律师成功案例 - 法律快车提供个旧知名律师、优秀律师、专业律师的咨询和推荐 其他 2632 个旧律师成功案例 - 法律快车提供个旧知名律师、优秀律师、专业律师的咨询和推荐 其他 1677 婚姻法论文 - 法律快车法律论文 其他 4303 什么是机动车?什么是非机动车? - 法律快车交通事故 其他 3673 404错误提示页面 - 法律快车 其他 ... ... ... 4829 律师搜索,律师查找 - 法律快车提供全国知名律师、优秀律师、专业律师的咨询和推荐 其他 4837 律师搜索,律师查找 - 法律快车提供全国知名律师、优秀律师、专业律师的咨询和推荐 其他 4842 律师搜索,律师查找 - 法律快车提供全国知名律师、优秀律师、专业律师的咨询和推荐 其他 8302 律师搜索,律师查找 - 法律快车提供全国知名律师、优秀律师、专业律师的咨询和推荐 其他 5034 离婚协议书范本(2015年版) - 法律快车婚姻法 其他 [359 rows x 3 columns] type perc 法律快车-律师助手 49894 77.094471 法律快车法律咨询 6421 9.921506 咨询发布成功 5220 8.065762 快搜 1943 3.002256 法律快车 818 1.263945 其他 359 0.554714 法律快车法律经验 59 0.091165 空 4 0.006181
统计无目的浏览用户中各个类型占比
def xiaguang(i): #自定义统计函数 j = i.loc[(i['fullURL'].str.contains('\.html'))==False, ['fullURL','fullURLId','pageTitle']] return j # 注意获取一次sql对象就需要重新访问一下数据库 engine = create_engine('mysql+pymysql://root:123456@127.0.0.1:3306/test?charset=utf8') sql = pd.read_sql('all_gzdata', engine, chunksize = 10000)# 分块读取数据库信息 counts5 = [xiaguang(i) for i in sql] counts5 = pd.concat(counts5) xg1 = counts5['fullURLId'].value_counts() print(xg1) # 求各个部分的占比 xg_ = pd.DataFrame(xg1) xg_.reset_index(inplace=True) xg_.columns= ['index', 'num'] xg_['perc'] = xg_['num']/xg_['num'].sum()*100 xg_.sort_values(by='num',ascending=False,inplace=True) xg_['type'] = xg_['index'].str.extract('(\d{3})') #提取前三个数字作为类别id xgs_ = xg_[['type', 'num']].groupby('type').sum() #按类别合并 xgs_.sort_values(by='num', ascending=False,inplace=True) #降序排列 xgs_['percentage'] = xgs_['num']/xgs_['num'].sum()*100 print(xgs_.round(4))
统计用户浏览网页次数的情况
# 统计点击次数 engine = create_engine('mysql+pymysql://root:123456@127.0.0.1:3306/test?charset=utf8') sql = pd.read_sql('all_gzdata', engine, chunksize = 10000)# 分块读取数据库信息 counts1 = [i['realIP'].value_counts() for i in sql] # 分块统计各个IP的出现次数 counts1 = pd.concat(counts1).groupby(level=0).sum() # 合并统计结果,level=0表示按照index分组 print(counts1) counts1_ = pd.DataFrame(counts1) counts1_ counts1['realIP'] = counts1.index.tolist() counts1_[1]=1 # 添加1列全为1 hit_count = counts1_.groupby('realIP').sum() # 统计各个“不同点击次数”分别出现的次数 # 也可以使用counts1_['realIP'].value_counts()功能 hit_count.columns=['用户数'] hit_count.index.name = '点击次数' # 统计1~7次、7次以上的用户人数 hit_count.sort_index(inplace = True) hit_count_7 = hit_count.iloc[:7,:] time = hit_count.iloc[7:,0].sum() # 统计点击次数7次以上的用户数 hit_count_7 = hit_count_7.append([{'用户数':time}], ignore_index=True) hit_count_7.index = ['1','2','3','4','5','6','7','7次以上'] hit_count_7['用户比例'] = hit_count_7['用户数'] / hit_count_7['用户数'].sum() print(hit_count_7)
82033 2 95502 1 103182 1 116010 2 136206 1 .. 4294809358 2 4294811150 1 4294852154 3 4294865422 2 4294917690 1 Name: realIP, Length: 230149, dtype: int64 用户数 用户比例 1 132119 0.574059 2 44175 0.191941 3 17573 0.076355 4 10156 0.044128 5 5952 0.025862 6 4132 0.017954 7 2632 0.011436 7次以上 13410 0.058267
分析浏览一次的用户行为
# 初始化数据库连接: engine = create_engine('mysql+pymysql://root:123456@localhost:3306/test?charset=utf8') sql = pd.read_sql('all_gzdata', engine, chunksize=1024 * 5) # 分块统计各个IP的点击次数 result = [i['realIP'].value_counts() for i in sql] click_count = pd.concat(result).groupby(level=0).sum() click_count = click_count.reset_index() click_count.columns = ['realIP', 'times'] # 筛选出来点击一次的数据 click_one_data = click_count[click_count['times'] == 1] # 这里只能再次读取数据 因为sql是一个生成器类型,所以在使用过一次以后,就不能继续使用了。必须要重新执行一次读取。 sql = pd.read_sql('all_gzdata', engine, chunksize=1024 * 5) # 取出这三列数据 data = [i[['fullURLId', 'fullURL', 'realIP']] for i in sql] data = pd.concat(data) # 和并数据 我以click_one_data为基准 按照realIP合并过来,目的方便查看点击一次的网页和realIP merge_data = pd.merge(click_one_data, data, on='realIP', how='left') # 点击一次的数据统计 写入数据库 以方便读取 校准无误 写入后就可以注释掉此句代码 #erge_data.to_sql('click_one_count', engine, if_exists='append') print(merge_data) # 统计排名前4和其他的网页类型 URL_count_4 = URL_count.iloc[:4,:] time = hit_count.iloc[4:,0].sum() # 统计其他的 URLindex = URL_count_4.index.values URL_count_4 = URL_count_4.append([{'count':time}], ignore_index=True) URL_count_4.index = [URLindex[0], URLindex[1], URLindex[2], URLindex[3], '其他'] URL_count_4['比例'] = URL_count_4['count'] / URL_count_4['count'].sum() print(URL_count_4)
realIP times fullURLId \ 0 95502 1 101003 1 103182 1 101003 2 136206 1 101003 3 140151 1 107001 4 155761 1 101003 ... ... ... ... 132114 4294737166 1 101003 132115 4294804343 1 101003 132116 4294807822 1 101003 132117 4294811150 1 101003 132118 4294917690 1 101003 fullURL 0 http://www.lawtime.cn/ask/question_7882607.html 1 http://www.lawtime.cn/ask/question_7174864.html 2 http://www.lawtime.cn/ask/question_8246285.html 3 http://www.lawtime.cn/info/gongsi/slbgfgs/2011... 4 http://www.lawtime.cn/ask/question_5951952.html ... ... 132114 http://www.lawtime.cn/ask/question_3947040.html 132115 http://www.lawtime.cn/ask/question_2064846.html 132116 http://www.lawtime.cn/ask/question_9981155.html 132117 http://www.lawtime.cn/ask/question_4931163.html 132118 http://www.lawtime.cn/ask/question_6910223.html [132119 rows x 4 columns] count 比例 101003 102560 0.649011 107001 19443 0.123037 1999001 9381 0.059364 301001 515 0.003259 其他 26126 0.165328
统计单用户浏览次数为一次的网页
# 在浏览1次的前提下, 得到的网页被浏览的总次数 fullURL_count = pd.DataFrame(real_one.groupby("fullURL")["fullURL"].count()) fullURL_count.columns = ["count"] fullURL_count["fullURL"] = fullURL_count.index.tolist() fullURL_count.sort_values(by='count', ascending=False, inplace=True) # 降序排列 # 网页类型ID统计 fullURLId_count = merge_data['fullURLId'].value_counts() fullURLId_count = fullURLId_count.reset_index() fullURLId_count.columns = ['fullURLId', 'count'] fullURLId_count['percent'] = fullURLId_count['count'] / fullURLId_count['count'].sum() * 100 print('*****' * 10) print(fullURLId_count) # 用户点击一次 浏览的网页统计 fullURL_count = merge_data['fullURL'].value_counts() fullURL_count = fullURL_count.reset_index() fullURL_count.columns = ['fullURL', 'count'] fullURL_count['percent'] = fullURL_count['count'] / fullURL_count['count'].sum() * 100 print('*****' * 10) print(fullURL_count)
************************************************** fullURLId count percent 0 101003 102560 77.626988 1 107001 19443 14.716279 2 1999001 9381 7.100417 3 301001 515 0.389800 4 102001 70 0.052983 5 103003 45 0.034060 6 101002 33 0.024977 7 101001 28 0.021193 8 102002 13 0.009840 9 106001 13 0.009840 10 101009 4 0.003028 11 101004 3 0.002271 12 101007 3 0.002271 13 101008 2 0.001514 14 102003 2 0.001514 15 101005 1 0.000757 16 102004 1 0.000757 17 101006 1 0.000757 18 102006 1 0.000757 ************************************************** fullURL count percent 0 http://www.lawtime.cn/info/shuifa/slb/20121119... 1013 0.766733 1 http://www.lawtime.cn/info/hunyin/lhlawlhxy/20... 501 0.379204 2 http://www.lawtime.cn/ask/question_925675.html 423 0.320166 3 http://www.lawtime.cn/info/shuifa/slb/20121119... 367 0.277780 4 http://www.lawtime.cn/ask/exp/13655.html 301 0.227825 ... ... ... ... 88030 http://www.lawtime.cn/ask/question_3357263.html 1 0.000757 88031 http://www.lawtime.cn/info/laodong/laodonganli... 1 0.000757 88032 http://www.lawtime.cn/info/lunwen/ipzhuzuo/201... 1 0.000757 88033 http://www.lawtime.cn/ask/question_307554.html 1 0.000757 88034 http://www.lawtime.cn/ask/question_10467655.html 1 0.000757 [88035 rows x 3 columns]
删除不符合规则的网页
import os import re import pandas as pd import pymysql as pm from random import sample # 修改工作路径到指定文件夹 os.chdir("D:\\360MoveData\\Users\\86130\\Documents\\Tencent Files\\2268756693\\FileRecv") # 读取数据 con = pm.connect(host='localhost',user='root',password='123456',database='test',charset='utf8') data = pd.read_sql('select * from all_gzdata',con=con) con.close() # 关闭连接 # 取出107类型数据 index107 = [re.search('107',str(i))!=None for i in data.loc[:,'fullURLId']] data_107 = data.loc[index107,:] # 在107类型中筛选出婚姻类数据 index = [re.search('hunyin',str(i))!=None for i in data_107.loc[:,'fullURL']] data_hunyin = data_107.loc[index,:] # 提取所需字段(realIP、fullURL) info = data_hunyin.loc[:,['realIP','fullURL']] # 去除网址中“?”及其后面内容 da = [re.sub('\?.*','',str(i)) for i in info.loc[:,'fullURL']] info.loc[:,'fullURL'] = da # 将info中‘fullURL’那列换成da # 去除无html网址 index = [re.search('\.html',str(i))!=None for i in info.loc[:,'fullURL']] index.count(True) # True 或者 1 , False 或者 0 info1 = info.loc[index,:] print("(学号 3110)去除无html网址如下:") print(info1)
realIP fullURL 0 2683657840 http://www.lawtime.cn/info/hunyin/hunyinfagui/... 4 2683657840 http://www.lawtime.cn/info/hunyin/hunyinfagui/... 9 1275347569 http://www.lawtime.cn/info/hunyin/lhlawlhxy/20... 62 1531496412 http://www.lawtime.cn/info/hunyin/hunyinfagui/... 86 838215995 http://www.lawtime.cn/info/hunyin/lhlawlhxy/20... ... ... ... 837347 2320911216 http://www.lawtime.cn/info/hunyin/lhlawlhxy/20... 837362 3458366734 http://www.lawtime.cn/info/hunyin/jhsy/daiyun/... 837370 2526756791 http://www.lawtime.cn/info/hunyin/hynews/20101... 837376 4267065457 http://www.lawtime.cn/info/hunyin/lhlawlhxy/20... 837434 3271035001 http://www.lawtime.cn/info/hunyin/lhlawlhxy/20... [31199 rows x 2 columns]
还原翻译网址
# 找出翻页和非翻页网址 index = [re.search('/\d+_\d+\.html',i)!=None for i in info1.loc[:,'fullURL']] index1 = [i==False for i in index] info1_1 = info1.loc[index,:] # 带翻页网址 info1_2 = info1.loc[index1,:] # 无翻页网址 # 将翻页网址还原 da = [re.sub('_\d+\.html','.html',str(i)) for i in info1_1.loc[:,'fullURL']] info1_1.loc[:,'fullURL'] = da # 翻页与非翻页网址合并 frames = [info1_1,info1_2] info2 = pd.concat(frames) # 或者 info2 = pd.concat([info1_1,info1_2],axis = 0) # 默认为0,即行合并 # 去重(realIP和fullURL两列相同) info3 = info2.drop_duplicates() # 将IP转换成字符型数据 info3.iloc[:,0] = [str(index) for index in info3.iloc[:,0]] info3.iloc[:,1] = [str(index) for index in info3.iloc[:,1]] print("(学号 3110)还原的翻译网址如下:") print(info3) len(info3)
realIP fullURL 0 2683657840 http://www.lawtime.cn/info/hunyin/hunyinfagui/... 86 838215995 http://www.lawtime.cn/info/hunyin/lhlawlhxy/20... 98 1531496412 http://www.lawtime.cn/info/hunyin/hunyinfagui/... 130 923358328 http://www.lawtime.cn/info/hunyin/zhonghun/zho... 140 1275347569 http://www.lawtime.cn/info/hunyin/lhlawlhxy/20... ... ... ... 837191 3897562894 http://www.lawtime.cn/info/hunyin/lhlawlhxy/20... 837362 3458366734 http://www.lawtime.cn/info/hunyin/jhsy/daiyun/... 837370 2526756791 http://www.lawtime.cn/info/hunyin/hynews/20101... 837376 4267065457 http://www.lawtime.cn/info/hunyin/lhlawlhxy/20... 837434 3271035001 http://www.lawtime.cn/info/hunyin/lhlawlhxy/20... [16570 rows x 2 columns]
16570
筛选浏览次数不满两次的用户
# 代码11-12 筛选浏览次数不满两次的用户 # 筛选满足一定浏览次数的IP IP_count = info3['realIP'].value_counts() # 找出IP集合 IP = list(IP_count.index) count = list(IP_count.values) # 统计每个IP的浏览次数,并存放进IP_count数据框中,第一列为IP,第二列为浏览次数 IP_count = pd.DataFrame({'IP':IP,'count':count}) print("(学号 3110)") print(IP_count) # 筛选出浏览网址在n次以上的IP集合 n = 2 index = IP_count.loc[:,'count']>n IP_index = IP_count.loc[index,'IP'] print(IP_index)
IP count 0 2609113527 895 1 3812410744 140 2 225896631 59 3 242673847 56 4 1190924814 48 ... ... ... 10524 3494221838 1 10525 1219597838 1 10526 49885111 1 10527 2861434551 1 10528 2306969614 1 [10529 rows x 2 columns] 0 2609113527 1 3812410744 2 225896631 3 242673847 4 1190924814 ... 865 3634500980 866 1519157623 867 3851633265 868 2213364337 869 1938534819 Name: IP, Length: 870, dtype: object
划分数据集
# 划分IP集合为训练集和测试集 index_tr = sample(range(0,len(IP_index)),int(len(IP_index)*0.8)) # 或者np.random.sample index_te = [i for i in range(0,len(IP_index)) if i not in index_tr] IP_tr = IP_index[index_tr] IP_te = IP_index[index_te] # 将对应数据集划分为训练集和测试集 index_tr = [i in list(IP_tr) for i in info3.loc[:,'realIP']] index_te = [i in list(IP_te) for i in info3.loc[:,'realIP']] data_tr = info3.loc[index_tr,:] data_te = info3.loc[index_te,:] print("(学号 3110)") print(len(data_tr)) IP_tr = data_tr.iloc[:,0] # 训练集IP url_tr = data_tr.iloc[:,1] # 训练集网址 IP_tr = list(set(IP_tr)) # 去重处理 url_tr = list(set(url_tr)) # 去重处理 len(url_tr)
4542标签:count,...,www,电子商务,cn,index,用户,第六周,http From: https://www.cnblogs.com/zhilin00/p/17282493.html
2448