首页 > 其他分享 >4.2

4.2

时间:2023-04-02 21:47:57浏览次数:44  
标签:count index loc IP 4.2 tr pd

import pandas as pd
import os
# 修改工作路径到指定文件夹
os.chdir("D:/chapter11/demo")
# 第一种连接方式
from sqlalchemy import create_engine

engine = create_engine('mysql+pymysql://root:1036294233@localhost:3306/test?charset=utf8')
sql = pd.read_sql('all_gzdata', engine, chunksize = 10000)
import pymysql as pm

con = pm.connect('localhost','root','1036294233','test',charset='utf8')
data = pd.read_sql('select * from all_gzdata',con=con)
con.close() #关闭连接

# 保存读取的数据
data.to_csv('C:\\Users\\ASUS\\Documents\\WeChat Files\\wxid_ivbyuelp335q22\\FileStorage\\File\\2023-03\\all_gzdata.csv', index=False, encoding='utf-8')

import pandas as pd
from sqlalchemy import create_engine

engine = create_engine('mysql+pymysql://root:1036294233@localhost:3306/test?charset=utf8')
sql = pd.read_sql('all_gzdata', engine, chunksize = 10000)
# 分析网页类型
counts = [i['fullURLId'].value_counts() for i in sql] #逐块统计
counts = counts.copy()
counts = pd.concat(counts).groupby(level=0).sum() # 合并统计结果,把相同的统计项合并(即按index分组并求和)
counts = counts.reset_index() # 重新设置index,将原来的index作为counts的一列。
counts.columns = ['index', 'num'] # 重新设置列名,主要是第二列,默认为0
counts['type'] = counts['index'].str.extract('(\d{3})') # 提取前三个数字作为类别id
counts_ = counts[['type', 'num']].groupby('type').sum() # 按类别合并
counts_.sort_values(by='num', ascending=False, inplace=True) # 降序排列
counts_['ratio'] = counts_.iloc[:,0] / counts_.iloc[:,0].sum()
print(counts_)

       num     ratio
type                 
101   84884  0.490081
199   42477  0.245243
107   37248  0.215053
301    3817  0.022038
102    3597  0.020767
106     768  0.004434
103     413  0.002384

def count107(i): #自定义统计函数
j = i[['fullURL']][i['fullURLId'].str.contains('107')].copy() # 找出类别包含107的网址
j['type'] = None # 添加空列
j['type'][j['fullURL'].str.contains('info/.+?/')]= '知识首页'
j['type'][j['fullURL'].str.contains('info/.+?/.+?')]= '知识列表页'
j['type'][j['fullURL'].str.contains('/\d+?_*\d+?\.html')]= '知识内容页'
return j['type'].value_counts()
# 注意:获取一次sql对象就需要重新访问一下数据库(!!!)
engine = create_engine('mysql+pymysql://root:1036294233@localhost:3306/test?charset=utf8')
sql = pd.read_sql('all_gzdata', engine, chunksize = 10000)

counts2 = [count107(i) for i in sql] # 逐块统计
counts2 = pd.concat(counts2).groupby(level=0).sum() # 合并统计结果
print(counts2)
#计算各个部分的占比
res107 = pd.DataFrame(counts2)
# res107.reset_index(inplace=True)
res107.index.name= '107类型'
res107.rename(columns={'type':'num'}, inplace=True)
res107['比例'] = res107['num'] / res107['num'].sum()
res107.reset_index(inplace = True)
print(res107)

知识内容页    33332
知识列表页     1993
知识首页      1923
Name: type, dtype: int64
   107类型    num        比例
0  知识内容页  33332  0.894867
1  知识列表页   1993  0.053506
2   知识首页   1923  0.051627

def countquestion(i): # 自定义统计函数
j = i[['fullURLId']][i['fullURL'].str.contains('\?')].copy() # 找出类别包含107的网址
return j

engine = create_engine('mysql+pymysql://root:1036294233@localhost:3306/test?charset=utf8')
sql = pd.read_sql('all_gzdata', engine, chunksize = 10000)

counts3 = [countquestion(i)['fullURLId'].value_counts() for i in sql]
counts3 = pd.concat(counts3).groupby(level=0).sum()
print(counts3)

# 求各个类型的占比并保存数据
df1 = pd.DataFrame(counts3)
df1['perc'] = df1['fullURLId']/df1['fullURLId'].sum()*100
df1.sort_values(by='fullURLId',ascending=False,inplace=True)
print(df1.round(4))

101003        13
102002        10
107001        63
1999001    13869
301001        70
Name: fullURLId, dtype: int64
         fullURLId     perc
1999001      13869  98.8877
301001          70   0.4991
107001          63   0.4492
101003          13   0.0927
102002          10   0.0713

def page199(i): #自定义统计函数
j = i[['fullURL','pageTitle']][(i['fullURLId'].str.contains('199')) &
(i['fullURL'].str.contains('\?'))]
j['pageTitle'].fillna('空',inplace=True)
j['type'] = '其他' # 添加空列
j['type'][j['pageTitle'].str.contains('法律快车-律师助手')]= '法律快车-律师助手'
j['type'][j['pageTitle'].str.contains('咨询发布成功')]= '咨询发布成功'
j['type'][j['pageTitle'].str.contains('免费发布法律咨询' )] = '免费发布法律咨询'
j['type'][j['pageTitle'].str.contains('法律快搜')] = '快搜'
j['type'][j['pageTitle'].str.contains('法律快车法律经验')] = '法律快车法律经验'
j['type'][j['pageTitle'].str.contains('法律快车法律咨询')] = '法律快车法律咨询'
j['type'][(j['pageTitle'].str.contains('_法律快车')) |
(j['pageTitle'].str.contains('-法律快车'))] = '法律快车'
j['type'][j['pageTitle'].str.contains('空')] = '空'

return j

# 注意:获取一次sql对象就需要重新访问一下数据库
engine = create_engine('mysql+pymysql://root:1036294233@localhost:3306/test?charset=utf8')
sql = pd.read_sql('all_gzdata', engine, chunksize = 10000)# 分块读取数据库信息
#sql = pd.read_sql_query('select * from all_gzdata limit 10000', con=engine)

counts4 = [page199(i) for i in sql] # 逐块统计
counts4 = pd.concat(counts4)
d1 = counts4['type'].value_counts()
print(d1)
d2 = counts4[counts4['type']=='其他']
print(d2)
# 求各个部分的占比并保存数据
df1_ = pd.DataFrame(d1)
df1_['perc'] = df1_['type']/df1_['type'].sum()*100
df1_.sort_values(by='type',ascending=False,inplace=True)
print(df1_)

法律快车-律师助手    10688
法律快车法律咨询      1370
咨询发布成功        1141
快搜             425
法律快车           165
其他              65
法律快车法律经验        15
Name: type, dtype: int64
                                                fullURL  \
3556  http://m.baidu.com/from=844b/bd_page_type=1/ss...   
7372  http://www.lawtime.cn/lawyer/lll20752712080365...   
826   http://www.lawtime.cn/newlawyer/index.php?m=in...   
847   http://www.lawtime.cn/newlawyer/index.php?m=in...   
882   http://www.lawtime.cn/newlawyer/index.php?m=index   
...                                                 ...   
678   http://www.lawtime.cn/spelawyer/index.php?m=se...   
683   http://www.lawtime.cn/spelawyer/index.php?m=se...   
2117  http://www.lawtime.cn/spelawyer/index.php?m=se...   
9461  http://www.lawtime.cn/ask/exp/taglist.html?key...   
3189  http://www.lawtime.cn/spelawyer/index.php?m=se...   

                                     pageTitle type  
3556                          婚姻法论文 - 法律快车法律论文   其他  
7372                          404错误提示页面 - 法律快车   其他  
826                           404错误提示页面 - 法律快车   其他  
847                           404错误提示页面 - 法律快车   其他  
882                           404错误提示页面 - 法律快车   其他  
...                                        ...  ...  
678   律师搜索,律师查找 - 法律快车提供全国知名律师、优秀律师、专业律师的咨询和推荐   其他  
683   律师搜索,律师查找 - 法律快车提供全国知名律师、优秀律师、专业律师的咨询和推荐   其他  
2117  律师搜索,律师查找 - 法律快车提供全国知名律师、优秀律师、专业律师的咨询和推荐   其他  
9461                          法律经验标签列表页 - 法律经验   其他  
3189  律师搜索,律师查找 - 法律快车提供全国知名律师、优秀律师、专业律师的咨询和推荐   其他  

[65 rows x 3 columns]
            type       perc
法律快车-律师助手  10688  77.063956
法律快车法律咨询    1370   9.878146
咨询发布成功      1141   8.226981
快搜           425   3.064388
法律快车         165   1.189704
其他            65   0.468671
法律快车法律经验      15   0.108155

def xiaguang(i): #自定义统计函数
j = i.loc[(i['fullURL'].str.contains('\.html'))==False,
['fullURL','fullURLId','pageTitle']]
return j

# 注意获取一次sql对象就需要重新访问一下数据库
engine = create_engine('mysql+pymysql://root:1036294233@localhost:3306/test?charset=utf8')
sql = pd.read_sql('all_gzdata', engine, chunksize = 10000)# 分块读取数据库信息

counts5 = [xiaguang(i) for i in sql]
counts5 = pd.concat(counts5)

xg1 = counts5['fullURLId'].value_counts()
print(xg1)
# 求各个部分的占比
xg_ = pd.DataFrame(xg1)
xg_.reset_index(inplace=True)
xg_.columns= ['index', 'num']
xg_['perc'] = xg_['num']/xg_['num'].sum()*100
xg_.sort_values(by='num',ascending=False,inplace=True)

xg_['type'] = xg_['index'].str.extract('(\d{3})') #提取前三个数字作为类别id

xgs_ = xg_[['type', 'num']].groupby('type').sum() #按类别合并
xgs_.sort_values(by='num', ascending=False,inplace=True) #降序排列
xgs_['percentage'] = xgs_['num']/xgs_['num'].sum()*100

print(xgs_.round(4))

1999001    24542
107001      3756
102002      2332
101001      1087
106001       768
102001       459
102003       270
102007       201
301001       195
101009       151
102008        92
101008        77
102004        72
102005        69
102009        56
102006        46
101004        40
101006        24
101005        19
Name: fullURLId, dtype: int64
        num  percentage
type                   
199   24542     71.6429
107    3756     10.9645
102    3597     10.5004
101    1398      4.0810
106     768      2.2419
301     195      0.5692

engine = create_engine('mysql+pymysql://root:1036294233@localhost:3306/test?charset=utf8')
sql = pd.read_sql('all_gzdata', engine, chunksize = 10000)# 分块读取数据库信息

counts1 = [i['realIP'].value_counts() for i in sql] # 分块统计各个IP的出现次数
counts1 = pd.concat(counts1).groupby(level=0).sum() # 合并统计结果,level=0表示按照index分组
print(counts1)

counts1_ = pd.DataFrame(counts1)
counts1_
counts1['realIP'] = counts1.index.tolist()

counts1_[1]=1 # 添加1列全为1
hit_count = counts1_.groupby('realIP').sum() # 统计各个“不同点击次数”分别出现的次数
# 也可以使用counts1_['realIP'].value_counts()功能
hit_count.columns=['用户数']
hit_count.index.name = '点击次数'

# 统计1~7次、7次以上的用户人数
hit_count.sort_index(inplace = True)
hit_count_7 = hit_count.iloc[:7,:]
time = hit_count.iloc[7:,0].sum() # 统计点击次数7次以上的用户数
hit_count_7 = hit_count_7.append([{'用户数':time}], ignore_index=True)
hit_count_7.index = ['1','2','3','4','5','6','7','7次以上']
hit_count_7['用户比例'] = hit_count_7['用户数'] / hit_count_7['用户数'].sum()
print(hit_count_7)

136206        1
159601        1
395385        2
611448        1
620302        1
             ..
4294721082    1
4294804343    1
4294809358    1
4294811150    1
4294917690    1
Name: realIP, Length: 66466, dtype: int64
        用户数      用户比例
1     43404  0.653026
2     11706  0.176120
3      3951  0.059444
4      2227  0.033506
5      1261  0.018972
6       832  0.012518
7       517  0.007778
7次以上   2568  0.038636

engine = create_engine('mysql+pymysql://root:1036294233@localhost:3306/test?charset=utf8')
all_gzdata = pd.read_sql_table('all_gzdata', con = engine) # 读取all_gzdata数据
#对realIP进行统计
# 提取浏览1次网页的数据
real_count = pd.DataFrame(all_gzdata.groupby("realIP")["realIP"].count())
real_count.columns = ["count"]
user_one = real_count[(real_count["count"] == 1)] # 提取只登录一次的用户
# 通过realIP与原始数据合并
real_one = pd.merge(user_one, all_gzdata, left_on="realIP", right_on="realIP")
# 统计浏览一次的网页类型
URL_count = pd.DataFrame(real_one.groupby("fullURLId")["fullURLId"].count())
URL_count.columns = ["count"]
URL_count.sort_values(by='count', ascending=False, inplace=True) # 降序排列
# 统计排名前4和其他的网页类型
URL_count_4 = URL_count.iloc[:4,:]
time = hit_count.iloc[4:,0].sum() # 统计其他的
URLindex = URL_count_4.index.values
URL_count_4 = URL_count_4.append([{'count':time}], ignore_index=True)
URL_count_4.index = [URLindex[0], URLindex[1], URLindex[2], URLindex[3],
'其他']
URL_count_4['比例'] = URL_count_4['count'] / URL_count_4['count'].sum()
print(URL_count_4)

  count        比例
101003   32669  0.673657
107001    7300  0.150531
1999001   3133  0.064605
301001     215  0.004433
其他        5178  0.106774

fullURL_count = pd.DataFrame(real_one.groupby("fullURL")["fullURL"].count())
fullURL_count.columns = ["count"]
fullURL_count["fullURL"] = fullURL_count.index.tolist()
fullURL_count.sort_values(by='count', ascending=False, inplace=True) # 降序排列

import os
import re
import pandas as pd
import pymysql as pm
from random import sample

# 修改工作路径到指定文件夹
os.chdir("D:/chapter11/demo")

# 读取数据
con = pm.connect('localhost','root','1036294233','test',charset='utf8')
data = pd.read_sql('select * from all_gzdata',con=con)
con.close() # 关闭连接

# 取出107类型数据
index107 = [re.search('107',str(i))!=None for i in data.loc[:,'fullURLId']]
data_107 = data.loc[index107,:]

# 在107类型中筛选出婚姻类数据
index = [re.search('hunyin',str(i))!=None for i in data_107.loc[:,'fullURL']]
data_hunyin = data_107.loc[index,:]

# 提取所需字段(realIP、fullURL)
info = data_hunyin.loc[:,['realIP','fullURL']]

# 去除网址中“?”及其后面内容
da = [re.sub('\?.*','',str(i)) for i in info.loc[:,'fullURL']]
info.loc[:,'fullURL'] = da # 将info中‘fullURL’那列换成da
# 去除无html网址
index = [re.search('\.html',str(i))!=None for i in info.loc[:,'fullURL']]
index.count(True) # True 或者 1 , False 或者 0
info1 = info.loc[index,:]

index = [re.search('/\d+_\d+\.html',i)!=None for i in info1.loc[:,'fullURL']]
index1 = [i==False for i in index]
info1_1 = info1.loc[index,:] # 带翻页网址
info1_2 = info1.loc[index1,:] # 无翻页网址
# 将翻页网址还原
da = [re.sub('_\d+\.html','.html',str(i)) for i in info1_1.loc[:,'fullURL']]
info1_1.loc[:,'fullURL'] = da
# 翻页与非翻页网址合并
frames = [info1_1,info1_2]
info2 = pd.concat(frames)
# 或者
info2 = pd.concat([info1_1,info1_2],axis = 0) # 默认为0,即行合并
# 去重(realIP和fullURL两列相同)
info3 = info2.drop_duplicates()
# 将IP转换成字符型数据
info3.iloc[:,0] = [str(index) for index in info3.iloc[:,0]]
info3.iloc[:,1] = [str(index) for index in info3.iloc[:,1]]
len(info3)

IP_count = info3['realIP'].value_counts()
# 找出IP集合
IP = list(IP_count.index)
count = list(IP_count.values)
# 统计每个IP的浏览次数,并存放进IP_count数据框中,第一列为IP,第二列为浏览次数
IP_count = pd.DataFrame({'IP':IP,'count':count})
# 3.3筛选出浏览网址在n次以上的IP集合
n = 2
index = IP_count.loc[:,'count']>n
IP_index = IP_count.loc[index,'IP']

index_tr = sample(range(0,len(IP_index)),int(len(IP_index)*0.8)) # 或者np.random.sample
index_te = [i for i in range(0,len(IP_index)) if i not in index_tr]
IP_tr = IP_index[index_tr]
IP_te = IP_index[index_te]
# 将对应数据集划分为训练集和测试集
index_tr = [i in list(IP_tr) for i in info3.loc[:,'realIP']]
index_te = [i in list(IP_te) for i in info3.loc[:,'realIP']]
data_tr = info3.loc[index_tr,:]
data_te = info3.loc[index_te,:]
print(len(data_tr))
IP_tr = data_tr.iloc[:,0] # 训练集IP
url_tr = data_tr.iloc[:,1] # 训练集网址
IP_tr = list(set(IP_tr)) # 去重处理
url_tr = list(set(url_tr)) # 去重处理
len(url_tr)

import pandas as pd
# 利用训练集数据构建模型
UI_matrix_tr = pd.DataFrame(0,index=IP_tr,columns=url_tr)
# 求用户-物品矩阵
for i in data_tr.index:
UI_matrix_tr.loc[data_tr.loc[i,'realIP'],data_tr.loc[i,'fullURL']] = 1
sum(UI_matrix_tr.sum(axis=1))

# 求物品相似度矩阵(因计算量较大,需要耗费的时间较久)
Item_matrix_tr = pd.DataFrame(0,index=url_tr,columns=url_tr)
for i in Item_matrix_tr.index:
for j in Item_matrix_tr.index:
a = sum(UI_matrix_tr.loc[:,[i,j]].sum(axis=1)==2)
b = sum(UI_matrix_tr.loc[:,[i,j]].sum(axis=1)!=0)
Item_matrix_tr.loc[i,j] = a/b

# 将物品相似度矩阵对角线处理为零
for i in Item_matrix_tr.index:
Item_matrix_tr.loc[i,i]=0

# 利用测试集数据对模型评价
IP_te = data_te.iloc[:,0]
url_te = data_te.iloc[:,1]
IP_te = list(set(IP_te))
url_te = list(set(url_te))

# 测试集数据用户物品矩阵
UI_matrix_te = pd.DataFrame(0,index=IP_te,columns=url_te)
for i in data_te.index:
UI_matrix_te.loc[data_te.loc[i,'realIP'],data_te.loc[i,'fullURL']] = 1

# 对测试集IP进行推荐
Res = pd.DataFrame('NaN',index=data_te.index,
columns=['IP','已浏览网址','推荐网址','T/F'])
Res.loc[:,'IP']=list(data_te.iloc[:,0])
Res.loc[:,'已浏览网址']=list(data_te.iloc[:,1])

# 开始推荐
for i in Res.index:
if Res.loc[i,'已浏览网址'] in list(Item_matrix_tr.index):
Res.loc[i,'推荐网址'] = Item_matrix_tr.loc[Res.loc[i,'已浏览网址'],
:].argmax()
if Res.loc[i,'推荐网址'] in url_te:
Res.loc[i,'T/F']=UI_matrix_te.loc[Res.loc[i,'IP'],
Res.loc[i,'推荐网址']]==1
else:
Res.loc[i,'T/F'] = False

# 保存推荐结果
Res.to_csv('C:\\Users\\ASUS\\Documents\\WeChat Files\\wxid_ivbyuelp335q22\\FileStorage\\File\\2023-03\\Res.csv',index=False,encoding='utf8')

import pandas as pd
# 读取保存的推荐结果
Res = pd.read_csv('C:\\Users\\ASUS\\Documents\\WeChat Files\\wxid_ivbyuelp335q22\\FileStorage\\File\\2023-03\\Res.csv',keep_default_na=False, encoding='utf8')

# 计算推荐准确率
Pre = round(sum(Res.loc[:,'T/F']=='True') / (len(Res.index)-sum(Res.loc[:,'T/F']=='NaN')), 3)

print(Pre)

# 计算推荐召回率
Rec = round(sum(Res.loc[:,'T/F']=='True') / (sum(Res.loc[:,'T/F']=='True')+sum(Res.loc[:,'T/F']=='NaN')), 3)

print(Rec)

# 计算F1指标
F1 = round(2*Pre*Rec/(Pre+Rec),3)
print(F1)

标签:count,index,loc,IP,4.2,tr,pd
From: https://www.cnblogs.com/zhouxinpeng/p/17281452.html

相关文章

  • 4.28
    CSS下拉菜单<style>.dropdown{position:relative;display:inline-block;}.dropdown-content{display:none;position:absolute;background-color:#f9f9f9;min-width:160px;box-shadow:0px8px16px0pxrgba(0,0,0,0.2);padding:12px......
  • 每日总结 4.2
    今天进行了支付页面的编写,如下:  <!--pages/info/info.wxml--><viewclass="view1"><viewclass="thumb"><textclass="t1">{{name}}</text><imagesrc="{{image}}"mode=""/></......
  • 4.2面试题
    面试题4.2面试题1数据库三大范式是什么2mysql有哪些索引类型,分别有什么作用3事务的特性和隔离级别第一遍自我理解回答数据库的三大范式:数据库的范式:关系型数据库中,数据表设计的基本原则、规则称为范式1NF:数据库最基本原则------->>!!!属性不可分割2NF:满足第一范式,且不......
  • 跨屏零代码saas建站平台2023.4.2发布更新
    跨屏零代码saas建站平台2023.4.2发布更新,主要更新了官网的UI,使其更加的简约,我们花了3年时间开发了这款零代码saas建站平台,然后正式运营以后,一直在致力于做简化工作,也就是化繁为简,不仅局限于官网的模板ui简化,以及用户的后台简化,注册登录、发布操作流程的简化,以及模板的简化。跨屏平......
  • 4.2.1 Redis相关命令详解及原理
    LinuxC/C++服务器Redis相关命令详解及原理Redis是RemoteDictionaryService的简称;也是远程字典服务;Redis是内存数据库,KV数据库,数据结构数据库;Redis应用非常广泛,如Twitter、暴雪娱乐、Github、StackOverflow、腾讯、阿里巴巴、京东、华为、新浪微博等,很多中小型公司......
  • opencv-python 4.2图像的几何变化
    转换OpenCV提供了两个转换函数cv.warpAffine和cv.warpPerspective,你可以使用它们进行各种转换。cv.warpAffine采用2x3变换矩阵作为参数输入,而cv.warpPerspective采用3x3变......
  • php:用数组实现多语言(PHP 7.4.2)
    一,适用的场景:   旧系统需要增加多语言,不想改变原有的运行环境,   所以没有使用gettext,选择简单的用数组来实现说明:刘宏缔的架构森林是一个专注架构的博客,地......
  • 最完美LTSC2021_19044.2788软件选装纯净版VIP40.0
    【系统简介】=============================================================1.本次更新母盘来LTSC2021.19044.2788。进一步优化调整。2.此版本精简量不大,满足各大平台需求......
  • docker安装seata1.4.2
    dockerrun-d--restart=always--nameseata-p8091:8091-v/root/seata/seata-server:/seata-server-eSEATA_IP=127.0.0.1-eSEATA_PORT=8091seataio/seata-serv......
  • Unbuntu22.04.2配置静态IP和SSH远程连接
    一、配置静态IP1.使用ifconfig命令查看服务器上的以太网口,并记录下来,我的是ens332.打开/etc/netplan下的配置文件,我的是01-network-manager-all.yaml3.找到刚刚......