首页 > 其他分享 >多卡并行训练框架(ddp) + 测评框架(支持多卡测评)

多卡并行训练框架(ddp) + 测评框架(支持多卡测评)

时间:2023-03-31 09:58:48浏览次数:53  
标签:__ dim 框架 nn 测评 cfg self 多卡 dropout

一、多卡并行训练框架

lightning-hydra-template

这里主要使用github上开源框架lightning-hydra-template,但该框架存在一些小的问题,目前得到了解决。
1. 将github上lightning-hydra-template框架加入自己的仓库,然后从仓库中下载到服务器。
2. 修改src/utils/utils.py中的extras函数,在后面加一个修复config的操作,如下:
def extras(cfg: DictConfig) -> None:
    """Applies optional utilities before the task is started.

    Utilities:
    - Ignoring python warnings
    - Setting tags from command line
    - Rich config printing
    """

    # return if no `extras` config
    if not cfg.get("extras"):
        log.warning("Extras config not found! <cfg.extras=null>")
        return

    # disable python warnings
    if cfg.extras.get("ignore_warnings"):
        log.info("Disabling python warnings! <cfg.extras.ignore_warnings=True>")
        warnings.filterwarnings("ignore")

    # prompt user to input tags from command line if none are provided in the config
    if cfg.extras.get("enforce_tags"):
        log.info("Enforcing tags! <cfg.extras.enforce_tags=True>")
        rich_utils.enforce_tags(cfg, save_to_file=True)

    # pretty print config tree using Rich library
    if cfg.extras.get("print_config"):
        log.info("Printing config tree with Rich! <cfg.extras.print_config=True>")
        rich_utils.print_config_tree(cfg, resolve=True, save_to_file=True)
        
    def fix_DictConfig(cfg: DictConfig):
        """fix all vars in the cfg config
        this is a in-place operation"""
        keys = list(cfg.keys())
        for k in keys:
            if type(cfg[k]) is DictConfig:
                fix_DictConfig(cfg[k])
            else:
                setattr(cfg, k, getattr(cfg, k))
                
    fix_DictConfig(cfg)

1. 数据集

1. 在configs/data下新建一个数据集yaml配置文件

例如 cifar10.yaml

_target_: src.data.cifar10_datamodule.CIFAR10DataModule # 之后需要再src/data下新建一个cifar10_datamodule.py文件,并且里面定义一个LightningDataModule类CIFAR10DataModule
data_dir: ${paths.data_dir} # 可在configs/paths/default.yaml中设置,data_dir为数据集所在目录
batch_size: 128
train_val_test_split: [45_000, 5_000, 10_000] # 划分数据集比例,在CIFAR10DataModule会用到这个参数
num_workers: 0
pin_memory: False # 数据集小的时候设置为False,数据集大的时候可以设置为True,减小数据从CPU复制到GPU的开销

2. 在src/data下新建一个datamodule.py数据模块定义文件

cifar10_datamodule.py

from typing import Any, Dict, Optional, Tuple

import torch
from lightning import LightningDataModule
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split
from torchvision.datasets import CIFAR10
from torchvision.transforms import transforms


class CIFAR10DataModule(LightningDataModule):
    def __init__(
        self,
        data_dir: str = "data/", # 默认值,会被cfg.paths.data_dir替换
        train_val_test_split: Tuple[int, int, int] = (45_000, 5_000, 10_000),
        batch_size: int = 64,
        num_workers: int = 0,
        pin_memory: bool = False,
    ):
        super().__init__()

        # this line allows to access init params with 'self.hparams' attribute
        # also ensures init params will be stored in ckpt
        self.save_hyperparameters(logger=False)

        # data transformations
        self.transforms = transforms.Compose(
            [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
        )

        self.data_train: Optional[Dataset] = None
        self.data_val: Optional[Dataset] = None
        self.data_test: Optional[Dataset] = None

    @property
    def num_classes(self):
        return 10

    def prepare_data(self):
        CIFAR10(root=self.hparams.data_dir, train=True, download=True)
        CIFAR10(root=self.hparams.data_dir, train=False, download=True)

    def setup(self, stage: Optional[str] = None):
        """Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.

        This method is called by lightning with both `trainer.fit()` and `trainer.test()`, so be
        careful not to execute things like random split twice!
        """
        # load and split datasets only if not loaded already
        if not self.data_train and not self.data_val and not self.data_test:
            trainset = CIFAR10(self.hparams.data_dir, train=True, transform=self.transforms)
            testset = CIFAR10(self.hparams.data_dir, train=False, transform=self.transforms)
            dataset = ConcatDataset(datasets=[trainset, testset]) # 合并数据集,然后划分训练-验证集-测试集(一般测试集无标签)
            self.data_train, self.data_val, self.data_test = random_split(
                dataset=dataset,
                lengths=self.hparams.train_val_test_split,
                generator=torch.Generator().manual_seed(513),
            )

    def train_dataloader(self):
        return DataLoader(
            dataset=self.data_train,
            batch_size=self.hparams.batch_size,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            shuffle=True,
        )

    def val_dataloader(self):
        return DataLoader(
            dataset=self.data_val,
            batch_size=self.hparams.batch_size,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            shuffle=False, # 验证集不需要打乱
        )

    def test_dataloader(self):
        return DataLoader(
            dataset=self.data_test,
            batch_size=self.hparams.batch_size,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            shuffle=False, # 测试集不需要打乱
        )

    def teardown(self, stage: Optional[str] = None):
        """Clean up after fit or test."""
        pass

    def state_dict(self):
        """Extra things to save to checkpoint."""
        return {}  # 无参数需要保存

    def load_state_dict(self, state_dict: Dict[str, Any]):
        """Things to do when loading checkpoint."""
        pass # 加载参数时候,该数据集并没有参数需要加载


if __name__ == "__main__":
    _ = CIFAR10DataModule()

2. 模型

模型改写成标准lightning格式

原始ViT模型定义

from turtle import forward
import torch
from torch import nn, einsum
import torch.nn.functional as F

from einops import rearrange, repeat
from einops.layers.torch import Rearrange

def pair(t):
    return t if isinstance(t, tuple) else (t, t)

class PreNorm(nn.Module):
    def __init__(self, dim, fn) -> None:
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn
    
    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)

class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout=0.):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, hidden_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout)
            )
    def forward(self, x):
        return self.net(x)

class Attention(nn.Module):
    def __init__(self, dim, heads=8, dim_head=64, dropout=0.) -> None:
        super().__init__()
        inner_dim = dim_head * heads
        project_out = not(heads == 1 and dim_head == dim)
        
        self.heads = heads
        self.scale = dim_head ** -0.5

        self.attend = nn.Softmax(dim=-1)
        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(dropout),
        ) if project_out else nn.Identity()

    def forward(self, x):
        b, n, _, h = *x.shape, self.heads
        qkv = self.to_qkv(x).chunk(3, dim=-1)           # (b, n(65), dim*3) ---> [3 * (b, n, dim)]
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), qkv)          # q, k, v   (b, h, n, dim_head(64))

        dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale

        attn = self.attend(dots)

        out = einsum('b h i j, b h j d -> b h i d', attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        return self.to_out(out)

class TransformerEncoder(nn.Module):
    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
        super().__init__()
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout)),
                PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))
            ]))
    
    def forward(self, x):
        for attn, ff in self.layers:
            x = attn(x) + x
            x = ff(x) + x
        return x

class ViT(nn.Module):
    def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool='cls', channels=3, dim_head=64, dropout=0., emb_dropout=0.):
        super().__init__()
        image_height, image_width = pair(image_size)
        patch_height, patch_width = pair(patch_size)

        assert  image_height % patch_height ==0 and image_width % patch_width == 0

        num_patches = (image_height // patch_height) * (image_width // patch_width)
        patch_dim = channels * patch_height * patch_width
        assert pool in {'cls', 'mean'}

        self.to_patch_embedding = nn.Sequential(
            Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=patch_height, p2=patch_width),
            nn.Linear(patch_dim, dim)
        )

        self.pos_embedding = nn.Parameter(torch.randn(1, num_patches+1, dim))
        self.cls_token = nn.Parameter(torch.randn(1, 1, dim))					# nn.Parameter()定义可学习参数
        self.dropout = nn.Dropout(emb_dropout)

        self.transformer = TransformerEncoder(dim, depth, heads, dim_head, mlp_dim, dropout)

        self.pool = pool
        self.to_latent = nn.Identity()

        self.mlp_head = nn.Sequential(
            nn.LayerNorm(dim),
            nn.Linear(dim, num_classes)
        )

    def forward(self, img):
        x = self.to_patch_embedding(img)        # b c (h p1) (w p2) -> b (h w) (p1 p2 c) -> b (h w) dim
        b, n, _ = x.shape           # b表示batchSize, n表示每个块的空间分辨率, _表示一个块内有多少个值

        cls_tokens = repeat(self.cls_token, '() n d -> b n d', b=b)  # self.cls_token: (1, 1, dim) -> cls_tokens: (batchSize, 1, dim)  
        x = torch.cat((cls_tokens, x), dim=1)               # 将cls_token拼接到patch token中去       (b, 65, dim)
        x += self.pos_embedding[:, :(n+1)]                  # 加位置嵌入(直接加)      (b, 65, dim)
        x = self.dropout(x)

        x = self.transformer(x)                                                 # (b, 65, dim)

        x = x.mean(dim=1) if self.pool == 'mean' else x[:, 0]                   # (b, dim)

        x = self.to_latent(x)                                                   # Identity (b, dim)
        # print(x.shape)

        return self.mlp_head(x)                                                 #  (b, num_classes)


if __name__ == "__main__":
    model_vit = ViT(
        image_size = 256,
        patch_size = 32,
        num_classes = 1000,
        dim = 1024,
        depth = 6,
        heads = 16,
        mlp_dim = 2048,
        dropout = 0.1,
        emb_dropout = 0.1
    )

    img = torch.randn(16, 3, 256, 256)

    preds = model_vit(img) 

    print(preds.shape)  # (16, 1000)
分成组件+模型格式

模型由各个组件搭建而成,然后附加优化器以及损失函数。

因此上面代码中组件部分有:TransformerEncoder,FeedForward、PreNorm 、Attention( 为了方便,这里把组成所有模型的模块都放在 vit_components.py中,对于多个模型共用的组件放在common.py中) 这里只有一个模型就全部放在vit_componts.py中了。

src/models/components/vit_components.py

from turtle import forward
import torch
from torch import nn, einsum
import torch.nn.functional as F

from einops import rearrange, repeat # einops: Einstein Notation for Operations 爱因斯坦符号表示
from einops.layers.torch import Rearrange

def pair(t):
    return t if isinstance(t, tuple) else (t, t) # 返回 double t

class PreNorm(nn.Module):
    """
    PreNorm:在处理前先进行LayerNorm操作

    优点:
    - 可以增加模型的泛化能力和训练效果
    - 对每一个样本的特征进行标准化处理,使得每个特征维度的均值为0,方差为1,\
    从而降低不同特征之间的相关性,提高模型的泛化性能。
    - 解决了深层神经网络中的梯度消失或爆炸问题,提高训练效果和泛化性能
    - 对每一个样本进行标准化,避免了BN中mini-batch的大小对标准化结果的影响

    """
    def __init__(self, dim, fn) -> None: # 需要给出特征维度
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn
    
    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)

class FeedForward(nn.Module): 
    """
    FeedForward: 前馈层

    一般:dim -> hidden_dim -> output_dim,两个全连接层,中间加入非线性激活函数
    全连接层后一般需要加一个非线性激活函数,这里使用的是GELU可以更好的解决梯度消失的问题
    """
    def __init__(self, dim, hidden_dim, dropout=0.):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, hidden_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout)
            )
    def forward(self, x):
        return self.net(x)


class Attention(nn.Module):
    """
    Attention: 自注意力层

    """
    def __init__(self, dim, heads=8, dim_head=64, dropout=0.) -> None:
        super().__init__()
        inner_dim = dim_head * heads
        project_out = not(heads == 1 and dim_head == dim)
        
        self.heads = heads
        self.scale = dim_head ** -0.5

        self.attend = nn.Softmax(dim=-1)
        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(dropout),
        ) if project_out else nn.Identity()

    def forward(self, x):
        b, n, _, h = *x.shape, self.heads
        qkv = self.to_qkv(x).chunk(3, dim=-1)           # (b, n(65), dim*3) ---> [3 * (b, n, dim)]
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), qkv)          # q, k, v   (b, h, n, dim_head(64))

        dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale

        attn = self.attend(dots)

        out = einsum('b h i j, b h j d -> b h i d', attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        return self.to_out(out)


class TransformerEncoder(nn.Module):
    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
        super().__init__()
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout)),
                PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))
            ]))
    
    def forward(self, x):
        for attn, ff in self.layers:
            x = attn(x) + x
            x = ff(x) + x
        return x

src/models/vit_net.py

import torch
from torch import nn

from einops import repeat
from einops.layers.torch import Rearrange

from vit_components import *

class ViT(nn.Module):
    def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool='cls', channels=3, dim_head=64, dropout=0., emb_dropout=0.):
        super().__init__()
        image_height, image_width = pair(image_size)
        patch_height, patch_width = pair(patch_size)

        assert  image_height % patch_height ==0 and image_width % patch_width == 0

        num_patches = (image_height // patch_height) * (image_width // patch_width)
        patch_dim = channels * patch_height * patch_width
        assert pool in {'cls', 'mean'}

        self.to_patch_embedding = nn.Sequential(
            Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=patch_height, p2=patch_width),
            nn.Linear(patch_dim, dim)
        )

        self.pos_embedding = nn.Parameter(torch.randn(1, num_patches+1, dim))
        self.cls_token = nn.Parameter(torch.randn(1, 1, dim))					# nn.Parameter()定义可学习参数
        self.dropout = nn.Dropout(emb_dropout)

        self.transformer = TransformerEncoder(dim, depth, heads, dim_head, mlp_dim, dropout)

        self.pool = pool
        self.to_latent = nn.Identity()

        self.mlp_head = nn.Sequential(
            nn.LayerNorm(dim),
            nn.Linear(dim, num_classes)
        )

    def forward(self, img):
        x = self.to_patch_embedding(img)        # b c (h p1) (w p2) -> b (h w) (p1 p2 c) -> b (h w) dim
        b, n, _ = x.shape           # b表示batchSize, n表示每个块的空间分辨率, _表示一个块内有多少个值

        cls_tokens = repeat(self.cls_token, '() n d -> b n d', b=b)  # self.cls_token: (1, 1, dim) -> cls_tokens: (batchSize, 1, dim)  
        x = torch.cat((cls_tokens, x), dim=1)               # 将cls_token拼接到patch token中去       (b, 65, dim)
        x += self.pos_embedding[:, :(n+1)]                  # 加位置嵌入(直接加)      (b, 65, dim)
        x = self.dropout(x)

        x = self.transformer(x)                                                 # (b, 65, dim)

        x = x.mean(dim=1) if self.pool == 'mean' else x[:, 0]                   # (b, dim)

        x = self.to_latent(x)                                                   # Identity (b, dim)
        # print(x.shape)
        return self.mlp_head(x)                                                 #  (b, num_classes)


if __name__ == "__main__":
    model_vit = ViT(
        image_size = 256,
        patch_size = 32,
        num_classes = 1000,
        dim = 1024,
        depth = 6,
        heads = 16,
        mlp_dim = 2048,
        dropout = 0.1,
        emb_dropout = 0.1
    )
    img = torch.randn(16, 3, 256, 256)
    preds = model_vit(img)
    print(preds.shape)  # (16, 1000)

3. 修改训练相关配置文件(训练配置yml、模型yml)

configs/train_cifar10.yml

# @package _global_

# specify here default configuration
# order of defaults determines the order in which configs override each other
defaults:
  - _self_
  - data: cifar10.yaml # 数据集如果不变,则这一项不变
  - model: vit.yaml # 模型改变,则需要修改这一项
  - callbacks: default.yaml
  - logger: null # set logger here or use command line (e.g. `python train.py logger=tensorboard`)
  - trainer: default.yaml
  - paths: default.yaml
  - extras: default.yaml
  - hydra: default.yaml

  # experiment configs allow for version control of specific hyperparameters
  # e.g. best hyperparameters for given model and datamodule
  - experiment: null

  # config for hyperparameter optimization
  - hparams_search: null

  # optional local config for machine/user specific settings
  # it's optional since it doesn't need to exist and is excluded from version control
  - optional local: default.yaml

  # debugging config (enable through command line, e.g. `python train.py debug=default)
  - debug: null

# task name, determines output directory path
task_name: "train"

# tags to help you identify your experiments
# you can overwrite this in experiment configs
# overwrite from command line with `python train.py tags="[first_tag, second_tag]"`
tags: ["dev"]

# set False to skip model training
train: True

# evaluate on test set, using best model weights achieved during training
# lightning chooses best weights based on the metric specified in checkpoint callback
test: True

# compile model for faster training with pytorch 2.0
compile: False

# simply provide checkpoint path to resume training
ckpt_path: null

# seed for random number generators in pytorch, numpy and python.random
seed: 20131

model/vit.yaml

_target_: src.models.vit_module.VITLitModule

optimizer:
  _target_: torch.optim.Adam # 指定优化器名称
  _partial_: true 
  lr: 0.001
  weight_decay: 0.0

scheduler:
  _target_: torch.optim.lr_scheduler.ReduceLROnPlateau 
  _partial_: true
  mode: min
  factor: 0.1
  patience: 10

net: # 指定_target_传入的net目标
  _target_: src.models.components.vit_net.ViT
  image_size: 32 # 28x28大小的输入图片
  channels: 3
  patch_size: 8 
  dim: 64 # 特征维度
  depth: 6
  heads: 8  # 多头注意力机制
  dim_head: 16
  mlp_dim: 128
  dropout: 0.
  emb_dropout: 0.
  num_classes: 10

4. 训练

指定训练用到的配置文件
修改train.py
修改hydra注解,将config_name=“mnist.yaml”改成config_name=”train_cifar10.yaml”

from typing import List, Optional, Tuple

import hydra
import lightning as L
import pyrootutils
import torch
from lightning import Callback, LightningDataModule, LightningModule, Trainer
from lightning.pytorch.loggers import Logger
from omegaconf import DictConfig

pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
# ------------------------------------------------------------------------------------ #
# the setup_root above is equivalent to:
# - adding project root dir to PYTHONPATH
#       (so you don't need to force user to install project as a package)
#       (necessary before importing any local modules e.g. `from src import utils`)
# - setting up PROJECT_ROOT environment variable
#       (which is used as a base for paths in "configs/paths/default.yaml")
#       (this way all filepaths are the same no matter where you run the code)
# - loading environment variables from ".env" in root dir
#
# you can remove it if you:
# 1. either install project as a package or move entry files to project root dir
# 2. set `root_dir` to "." in "configs/paths/default.yaml"
#
# more info: https://github.com/ashleve/pyrootutils
# ------------------------------------------------------------------------------------ #

from src import utils

log = utils.get_pylogger(__name__)


@utils.task_wrapper
def train(cfg: DictConfig) -> Tuple[dict, dict]:
    """Trains the model. Can additionally evaluate on a testset, using best weights obtained during
    training.

    This method is wrapped in optional @task_wrapper decorator, that controls the behavior during
    failure. Useful for multiruns, saving info about the crash, etc.

    Args:
        cfg (DictConfig): Configuration composed by Hydra.

    Returns:
        Tuple[dict, dict]: Dict with metrics and dict with all instantiated objects.
    """

    # set seed for random number generators in pytorch, numpy and python.random
    if cfg.get("seed"):
        L.seed_everything(cfg.seed, workers=True)

    log.info(f"Instantiating datamodule <{cfg.data._target_}>")
    datamodule: LightningDataModule = hydra.utils.instantiate(cfg.data)

    log.info(f"Instantiating model <{cfg.model._target_}>")
    model: LightningModule = hydra.utils.instantiate(cfg.model)

    log.info("Instantiating callbacks...")
    callbacks: List[Callback] = utils.instantiate_callbacks(cfg.get("callbacks"))

    log.info("Instantiating loggers...")
    logger: List[Logger] = utils.instantiate_loggers(cfg.get("logger"))

    log.info(f"Instantiating trainer <{cfg.trainer._target_}>")
    trainer: Trainer = hydra.utils.instantiate(cfg.trainer, callbacks=callbacks, logger=logger)

    object_dict = {
        "cfg": cfg,
        "datamodule": datamodule,
        "model": model,
        "callbacks": callbacks,
        "logger": logger,
        "trainer": trainer,
    }

    if logger:
        log.info("Logging hyperparameters!")
        utils.log_hyperparameters(object_dict)

    if cfg.get("compile"):
        log.info("Compiling model!")
        model = torch.compile(model)

    if cfg.get("train"):
        log.info("Starting training!")
        trainer.fit(model=model, datamodule=datamodule, ckpt_path=cfg.get("ckpt_path"))

    train_metrics = trainer.callback_metrics

    if cfg.get("test"):
        log.info("Starting testing!")
        ckpt_path = trainer.checkpoint_callback.best_model_path
        if ckpt_path == "":
            log.warning("Best ckpt not found! Using current weights for testing...")
            ckpt_path = None
        trainer.test(model=model, datamodule=datamodule, ckpt_path=ckpt_path)
        log.info(f"Best ckpt path: {ckpt_path}")

    test_metrics = trainer.callback_metrics

    # merge train and test metrics
    metric_dict = {**train_metrics, **test_metrics}

    return metric_dict, object_dict


@hydra.main(version_base="1.3", config_path="../configs", config_name="train_cifar10.yaml")
def main(cfg: DictConfig) -> Optional[float]:
    # apply extra utilities
    # (e.g. ask for tags if none are provided in cfg, print cfg tree, etc.)
    utils.extras(cfg)

    # train the model
    metric_dict, _ = train(cfg)

    # safely retrieve metric value for hydra-based hyperparameter optimization
    metric_value = utils.get_metric_value(
        metric_dict=metric_dict, metric_name=cfg.get("optimized_metric")
    )

    # return optimized metric
    return metric_value


if __name__ == "__main__":
    main()

修改trainer/default.yaml
将max_epochs设为50 或者 在外指定trainer.max_epochs=50

_target_: lightning.pytorch.trainer.Trainer

default_root_dir: ${paths.output_dir}

min_epochs: 3 # prevents early stopping
max_epochs: 50

accelerator: cpu
devices: 1

# mixed precision for extra speed-up
# precision: 16

# perform a validation loop every N training epochs
check_val_every_n_epoch: 1

# set True to to ensure deterministic results
# makes training slower but gives more reproducibility than just setting seeds
deterministic: False
python src/main.py trainer=ddp trainer.max_epochs=50 logger=wandb # 使用wandb需要修改logger下的wandb配置文件
如果想用特定编号的GPU,可以在python src/main.py前面加一个命令 CUDA_VISIBLE_DEVICES=0,1,2,3



二、测评框架(多卡测评)

lightning-hydra-template框架支持多卡测评

标签:__,dim,框架,nn,测评,cfg,self,多卡,dropout
From: https://www.cnblogs.com/raiuny/p/17237433.html

相关文章

  • 设计模式(三十)----综合应用-自定义Spring框架-自定义Spring IOC-定义bean、注册表相
    现要对下面的配置文件进行解析,并自定义Spring框架的IOC对涉及到的对象进行管理。<?xmlversion="1.0"encoding="UTF-8"?><beans>  <beanid="userService"class="com.itheima.service.impl.UserServiceImpl">    <propertyname=&qu......
  • go web 框架
      在Go语言开发的Web框架中,有两款著名Web框架分别是Martini和Gin,两款Web框架相比较的话,Gin自己说它比Martini要强很多。Gin是Go语言写的一个web框架,它具有运行速度快,分组的路由器,良好的崩溃捕获和错误处理,非常好的支持中间件和json。总之在Go语言开发领域......
  • Flask框架 之Flask-WTF表单扩展
    pipinstallflask-wtf 一、WTForms支持的HTML标准字段字段对象说明StringField文本字段TextAreaField多行文本字段PasswordField密码文本字段Hid......
  • Python编程必不可少的pytest测试框架
    进行编程测试重要的是为了更高效的完成功能的实现。pytest是基于unittest实现的第三方测试框架,比unittest更加的简洁、高效,并且可以完美兼容unittest的测试代码,无需对......
  • 机器视觉框架源码 视觉检测、AOI视觉检测、机械手定位、点胶机
    机器视觉框架源码到手vs2019可以直接编译、视觉检测、AOI视觉检测、机械手定位、点胶机、插件机、激光切割机、视觉螺丝机、视觉贴合机、激光焊接机、视觉裁板机……,C#......
  • Aop面向方面编程之PostSharp框架
    官网:https://www.postsharp.net/aop.net/msil-injection向切面编程的概念已经盛行很久了,可以很好的将我们代码的各个关注方面分离开来.比如:事务,日志,异常处理,数......
  • scrapy框架的认识
      在爬虫过程中,每次写一个爬虫程序时,都会从研究网页信息基本情况,所用到的库和方法。每次写基础代码时,都会略显繁琐。之前我也曾想过自己写一个基础的框架,从请求到响应再......
  • Flask框架 之Flask-SQLAlchemy操作数据库
    一、代码fromflaskimportFlaskfromflask_sqlalchemyimportSQLAlchemyfromsqlalchemyimportdescclassConfig(object):'''sqlalchemy参数配置'''......
  • scrapy框架
    目录一、框架介绍二、安装步骤三、创建项目四、项目目录结构五、项目配置1.基本配置2.提高爬虫效率的配置六、解析数据1.解析方法2.解析案例七、持久化方案八、在scrap......
  • ThinkPHP框架:更新个别字段的值setField、setInc、setDec的用法
    ThinkPHP有三个更新个别字段的值的函数,分别为setField、setInc、setDec。setInc():将数字字段值增加setDec():将数字字段值减少setField,根据条件更新一个或多个字段的值......