首页 > 其他分享 >「Gym102759B」Cactus Competition 题解

「Gym102759B」Cactus Competition 题解

时间:2023-03-25 11:12:16浏览次数:68  
标签:题解 ll Gym102759B Competition 不能 y1 line y2 forall

传送门

「Gym102759B」Cactus Competition

题目大意

有一个 \(n \times m\) 的网格图,一个长度为 \(n\) 的序列 \(a\),和一个长度为 \(m\) 的序列 \(b\)。

网格图中,第 \(i\) 行第 \(j\) 列的位置有一个数 \(c_{i,j}=a_i+b_j\)。\(c_{i,j} \ge 0\) 表示这个位置可以通过。

一对 \((S,T)\) 合法当且仅当 \(S \le T\),点 \((S,1)\) 作为起点,\((T,m)\) 作为终点,只向下走或向右走能从起点到达终点。

求合法的 \((S,T)\) 总数。

\(n,m \le 2 \times 10^5\)。

思路

由于 \(n,m\) 很大,而且题目给出 \(c\) 数组的方式很特殊,我们考虑这个图有什么性质。

首先,我们考虑从 \((1,1)\) 到 \((n,m)\) 怎么走

对于一般的图,有可能会有下图情况,其中灰色的是不能走的位置:

图挂了

回到本题的图中,我们可以发现,因为 \(c_{i,j}=a_i+b_j,c_{i+1,j}=a_{i+1}+b_j\),又由图知 \(c_{i+1,j} < 0,c_{i,j} \ge 0\),所以 \(c_{i,j} > c_{i+1,j}\),也就是 \(a_i > a_{i+1}\)。

根据 \(a_i > a_{i+1}\) 倒推得 \(c_{i,j+1} > c_{i+1,j+1}\),所以 \((i+1,j+1)\) 必定是不能走的。

那么拓展到一般情况,只要存在一个 \(x\) 使得 \((i,x)\) 能走,\((i+1,x)\) 不能走,那么对于任意的 \(x\),\((i,x)\) 不能走时 \((i+1,x)\) 必定不能走

举个例子,下图所有橙色的位置都是不能走的。

图挂了

竖着的不能走的段同理。

所以在本题中从 \((1,1)\) 到 \((n,m)\) 没有路只有四种情况:

  1. 有一整行不能走,即 \(\exists x \in [1,n]\),使得 \(\forall y \in [1,m],a_x+b_y < 0\);

  2. 有一整列不能走,即 \(\exists y \in [1,m]\),使得 \(\forall x \in [1,n],a_x+b_y < 0\);

  3. 不能走的位置将 \((1,1)\) 围住了,即 \(\exists x \in [1,n],y \in [1,m]\),使得 \(\forall i \in [1,x],a_i+b_y < 0\) 且 \(\forall j \in [1,y],a_x+b_j < 0\);

  4. 不能走的位置将 \((n,m)\) 围住了,即 \(\exists x \in [1,n],y \in [1,m]\),使得 \(\forall i \in [x,n],a_i+b_y < 0\) 且 \(\forall j \in [y,m],a_x+b_j < 0\)。


现在我们找到了图的性质,回归原来的问题,不固定起终点,考虑对这四种情况分别如何计算答案。

直接计算不太好想,我们考虑计算不合法的数量。按照不合法的四种情况进行讨论:

  1. 令第 \(i\) 行不能走,那么 \(S \in [1,i],T \in [i,n]\) 不合法。

  2. 令第 \(j\) 列的 \(l\) 行到 \(r\) 行之间不能走,那么 \(S \in [l,r],T \in [l,r]\) 不合法。

  3. 令不能走的位置的交叉处坐标为 \((i,j)\),最上方的不能走的格子纵坐标为 \(t\),那么 \(S \in [t,j],T \in [t,n]\) 不合法。

  4. 令不能走的位置的交叉处坐标为 \((i,j)\),最下方的不能走的格子纵坐标为 \(t\),那么 \(S \in [1,t],T \in [j,t]\) 不合法。

我们发现,每种情况都是对 \(S,T\) 做出了限制,直接乘起来会计算重复,所以可以根据套路,将其转化为矩形面积,使用扫描线处理。

套路:两个变量同时受到限制,答案用到这两个变量的乘积,且直接算会算重的时候,可以使用扫描线。

但是这里需要注意 \(S \le T\)。这个的处理方法有两种,一种是查询时只查绿色部分;一种是暴力加 \(n\) 个阶梯状的蓝色矩形。代码中使用的是后者。

图挂了

最后,我们需要使用二分、ST 表和前后缀最值来加快处理速度,具体实现见代码。

总复杂度 \(O(n \log n)\)。

注意把数组大小算对!代码中的数组是卡范围开的,可以用作参考。

代码实现

小提示: y1 不能用作全局变量名。

#include<bits/stdc++.h>
#define ll long long
#define For(i,a,b) for(ll i=(a);i<=(b);++i)
#define Rep(i,a,b) for(ll i=(a);i>=(b);--i)
const ll N=2e5+10;
using namespace std;

struct node{
	ll x,y1,y2;//位置
	ll opt;//类型
}line[N*8];//线段
ll cnt;//线段个数
bool cmp(node a,node b){//按x坐标排序
	return a.x<b.x;
}

struct ST{//ST表
	ll log[N];
	ll f[N][20];
	void init(ll n,ll a[]){//预处理
		log[0]=-1;
		For(i,1,n)log[i]=log[i>>1]+1,f[i][0]=a[i];
		For(j,1,log[n]){
			For(i,1,n-(1<<j)+1){
				f[i][j]=max(f[i][j-1],f[i+(1<<j-1)][j-1]);
			}
		}
	}
	ll query(ll l,ll r){//查询
		if(l>r)return 1145141919810;
		ll t=log[r-l+1];
		return max(f[l][t],f[r-(1<<t)+1][t]);
	}
}ST_a;

struct SEG{//线段树
	#define lson rt<<1
	#define rson rt<<1|1
	ll tot[N*32],lazy[N*32];
	void pushup(ll rt,ll l,ll r){
		if(lazy[rt]>0)tot[rt]=r-l+1;
		else tot[rt]=tot[lson]+tot[rson];
	}
	void change(ll rt,ll l,ll r,ll x,ll y,ll z){
		if(x<=l&&r<=y){
			lazy[rt]+=z;
			pushup(rt,l,r);
			return;
		}
		ll mid=l+r>>1;
		if(x<=mid)change(lson,l,mid,x,y,z);
		if(y>mid)change(rson,mid+1,r,x,y,z);
		pushup(rt,l,r);
	}
}seg;

ll n,m,k,q;
ll a[N];
ll b[N];
ll pmin[N],pmax[N];//前缀最值
ll smin[N],smax[N];//后缀最值

void add(ll x1,ll x2,ll y1,ll y2){//将矩形转化为线段
	if(x1>x2||y1>y2)return;
	x2++;
	line[++cnt]=(node){x1,y1,y2,1};
	line[++cnt]=(node){x2,y1,y2,-1};
}

void mian(){
	
	scanf("%lld",&n);
	scanf("%lld",&m);
	For(i,1,n){
		scanf("%lld",&a[i]);
	}
	For(i,1,m){
		scanf("%lld",&b[i]);
	}
	//最值预处理
	ST_a.init(n,a);
	pmax[0]=smax[m+1]=-1e9;
	pmin[0]=smin[m+1]=1e9;
	For(i,1,m){
		pmax[i]=max(pmax[i-1],b[i]);
		pmin[i]=min(pmin[i-1],b[i]);
	}
	Rep(i,m,1){
		smax[i]=max(smax[i+1],b[i]);
		smin[i]=min(smin[i+1],b[i]);
	}
	//1. 一整行不能走
	For(i,1,n){
		if(a[i]+pmax[m]<0){
			add(1,i,i,n);
		}
	}
	//2. 一列的一段连续区间不能走
	For(j,1,m){
		if(b[j]==pmin[m]){//只需要找最小位置
			ll l=1,r=1;
			while(l<=n){
				while(a[r]+b[j]<0&&r<=n)r++;
				add(l,r-1,l,r-1);
				l=r=r+1;
			}
			break;
		}
	}
	//3. 一个边框把起点围住了
	For(i,1,n){
		ll l,r;
		//二分找出最右端位置
		l=1,r=m;
		ll j=0;
		while(l<=r){
			ll mid=l+r>>1;
			if(pmax[mid]+a[i]<0)l=mid+1,j=mid;
			else r=mid-1;
		}
		if(!j)continue;
		//二分找出最大长度
		l=1,r=i;
		ll t=i;
		while(l<=r){
			ll mid=l+r>>1;
			if(pmin[j]+ST_a.query(mid,i)<0)r=mid-1,t=mid;
			else l=mid+1;
		}
		add(t,i,t,n);
	}
	//4. 一个边框把终点围住了
	For(i,1,n){
		ll l,r;
		//二分找出最左端位置
		l=1,r=m;
		ll j=m+1;
		while(l<=r){
			ll mid=l+r>>1;
			if(smax[mid]+a[i]<0)r=mid-1,j=mid;
			else l=mid+1;
		}
		if(j>m)continue;
		//二分找出最大长度
		l=i,r=n;
		ll t=i;
		while(l<=r){
			ll mid=l+r>>1;
			if(smin[j]+ST_a.query(i,mid)<0)l=mid+1,t=mid;
			else r=mid-1;
		}
		add(1,t,i,t);
	}
	//添加阶梯状矩阵
	For(i,1,n)add(i,i,1,i-1);
	//排序
	sort(line+1,line+cnt+1,cmp);
	//扫描线
	ll ans=0;
	For(i,1,cnt){
		if(i>1)ans+=(line[i].x-line[i-1].x)*seg.tot[1];
		seg.change(1,1,n,line[i].y1,line[i].y2,line[i].opt);
	}
	//总体减去不合法
	printf("%lld",n*n-ans);
	
}

int main(){
	int T=1;
//	scanf("%d",&T);
	while(T--)mian();
	return 0;
}

尾声

如果你发现了问题,你可以直接回复这篇题解

如果你有更好的想法,也可以直接回复!

标签:题解,ll,Gym102759B,Competition,不能,y1,line,y2,forall
From: https://www.cnblogs.com/zsc985246/p/17254351.html

相关文章

  • Educational Codeforces Round 145 (Rated for Div. 2) A-D题解
    比赛地址A.Garland1voidsolve()2{3for(inti=1;i<=4;i++)4{5b[i]=a[i]=0;6}7intcnt=0;8stringt;cin>>t;9......
  • P1853 投资的最大效益 题解
    题目传送门更好的阅读体验题目大意有初始总资产\(s\)和债券种数\(d\),每种债券有投资额和年利息,求\(n\)年后的最大总资产。解题思路完全背包问题(每种债券可以投资......
  • 题解:【COCI2019-2020#6】 Trener
    题目链接本人于三月二十四日模拟赛本题中使用\(\mathcalO(n^2k+nk^2)\)哈希+DP,因神秘常数原因竟打不过\(\mathcalO(n^2k^2)\),甚至被卡的TLE飞起,怒挂五十分。赛......
  • 训练round1题解
    SMUSpring2023TrialContestRound1A.大意:给出一个仅由0,1组成的字符串,该字符串是多次在首位各加0或1得到,问最短的原始字符串的长度。思路:一次操作增加两个字符,特......
  • [ABC276G] Count Sequences 题解
    考虑差分,设\(d_i=a_i-a_{i-1}\),特别的,\(d_1=a_1\),那么约束就变成了\(\displaystyle\sumd_i\lem\)。对所有\(i>1\)有\(d_i\not\equiv0\pmod3\)。发现\(d_1\)......
  • CSP20230319-4 星际网络II 题解
    〇、题目题目描述随着星际网络的进一步建设和规模的增大,一个新的问题出现在网络工程师面前——地址空间不够用了!原来,星际网络采用了传统的IPv6协议,虽然有\(2^{128}\)级......
  • 【sklearn版本问题解决】
    一、报错fromsklearn.utils.validationimportcheck_memoryImportError:cannotimportname'check_memory'二、解决1.首先我去看了相关位置的源码发现validation.py里......
  • 关于安装google-colab包速缓慢的问题解决
    最近想从colab上重构源码包在本地实现,但是总有一个包是来自google.colab的fromgoole.colabimportfiles提示没有google.colab的安装模块,需要安装google-colab的这个包......
  • T324159 卡空间的题目/电脑白吃 题解
    https://www.luogu.com.cn/problem/T324159题目大意:给定一个大小为\(n\)的数组,找到其中的多数元素。多数元素是指在数组中出现次数大于\(\lfloor\frac{n}{2}\rfloo......
  • CF1168C And Reachability 题解 线性dp
    题目链接https://codeforces.com/problemset/problem/1168/C题目大意给定一个数组\(a\),从下标\(x\)能够转移到下标\(y\)要满足\(x\lty\)且\(a_{p_i}\,\&\,a......