首页 > 其他分享 >爬虫进阶之多线程爬虫问题详解

爬虫进阶之多线程爬虫问题详解

时间:2023-03-23 09:00:34浏览次数:33  
标签:__ 进阶 self 爬虫 queue threading 线程 多线程 def

大多数正常人在下载图片的时候都是一个一个点击保存,图片越多花费的时间越多,大大的降低了工作效率。如果是学了爬虫的,一定会想到多线程来自动下载保存图片。

多线程介绍:

多线程是为了同步完成多项任务,通过提高资源使用效率来提高系统的效率。线程是在同一时间需要完成多项任务的时候实现的。

将多线程这种比喻成火车的每一节车厢,而所谓的进程就是火车。车厢脱离了火车的牵引就无法正常行驶了。同样的道理火车可以有很多节车厢。说白了,多线程的出现就是为了提升工作效率。但是也会伴随着一些问题的出现。

threading模块介绍:

threading模块是python中专门提供用来做多线程编程的模块。threading模块中最常用的类是Thread。以下看一个简单的多线程程序:

import threading
import time

def coding():
    for x in range(3):
        print('%s正在写代码' % x)
        time.sleep(1)

def drawing():
    for x in range(3):
        print('%s正在画图' % x)
        time.sleep(1)


def single_thread():
    coding()
    drawing()

def multi_thread():
    t1 = threading.Thread(target=coding)
    t2 = threading.Thread(target=drawing)

    t1.start()
    t2.start()

if __name__ == '__main__':
    multi_thread()

查看线程数:

使用threading.enumerate()函数便可以看到当前线程的数量。

查看当前线程的名字:

使用threading.current_thread()可以看到当前线程的信息。

继承自threading.Thread类:

为了让线程代码更好的封装。可以使用threading模块下的Thread类,继承自这个类,然后实现run方法,线程就会自动运行run方法中的代码。示例代码如下:

import threading
import time

class CodingThread(threading.Thread):
    def run(self):
        for x in range(3):
            print('%s正在写代码' % threading.current_thread())
            time.sleep(1)

class DrawingThread(threading.Thread):
    def run(self):
        for x in range(3):
            print('%s正在画图' % threading.current_thread())
            time.sleep(1)

def multi_thread():
    t1 = CodingThread()
    t2 = DrawingThread()

    t1.start()
    t2.start()

if __name__ == '__main__':
    multi_thread()

多线程共享全局变量的问题:

多线程都是在同一个进程中运行的。因此在进程中的全局变量所有线程都是可共享的。这就造成了一个问题,因为线程执行的顺序是无序的。有可能会造成数据错误。比如以下代码:

import threading

tickets = 0

def get_ticket():
    global tickets
    for x in range(1000000):
        tickets += 1
    print('tickets:%d'%tickets)

def main():
    for x in range(2):
        t = threading.Thread(target=get_ticket)
        t.start()

if __name__ == '__main__':
    main()

以上结果正常来讲应该是6,但是因为多线程运行的不确定性。因此最后的结果可能是随机的。

锁机制:

为了解决以上使用共享全局变量的问题。threading提供了一个Lock类,这个类可以在某个线程访问某个变量的时候加锁,其他线程此时就不能进来,直到当前线程处理完后,把锁释放了,其他线程才能进来处理。示例代码如下:

import threading

VALUE = 0

gLock = threading.Lock()

def add_value():
    global VALUE
    gLock.acquire()
    for x in range(1000000):
        VALUE += 1
    gLock.release()
    print('value:%d'%VALUE)

def main():
    for x in range(2):
        t = threading.Thread(target=add_value)
        t.start()

if __name__ == '__main__':
    main()

Lock版本生产者和消费者模式:

生产者和消费者模式是多线程开发中经常见到的一种模式。生产者的线程专门用来生产一些数据,然后存放到一个中间的变量中。消费者再从这个中间的变量中取出数据进行消费。但是因为要使用中间变量,中间变量经常是一些全局变量,因此需要使用锁来保证数据完整性。以下是使用threading.Lock锁实现的“生产者与消费者模式”的一个例子:

import threading
import random
import time

gMoney = 1000
gLock = threading.Lock()
# 记录生产者生产的次数,达到10次就不再生产
gTimes = 0

class Producer(threading.Thread):
    def run(self):
        global gMoney
        global gLock
        global gTimes
        while True:
            money = random.randint(100, 1000)
            gLock.acquire()
            # 如果已经达到10次了,就不再生产了
            if gTimes >= 10:
                gLock.release()
                break
            gMoney += money
            print('%s当前存入%s元钱,剩余%s元钱' % (threading.current_thread(), money, gMoney))
            gTimes += 1
            time.sleep(0.5)
            gLock.release()

class Consumer(threading.Thread):
    def run(self):
        global gMoney
        global gLock
        global gTimes
        while True:
            money = random.randint(100, 500)
            gLock.acquire()
            if gMoney > money:
                gMoney -= money
                print('%s当前取出%s元钱,剩余%s元钱' % (threading.current_thread(), money, gMoney))
                time.sleep(0.5)
            else:
                # 如果钱不够了,有可能是已经超过了次数,这时候就判断一下
                if gTimes >= 10:
                    gLock.release()
                    break
                print("%s当前想取%s元钱,剩余%s元钱,不足!" % (threading.current_thread(),money,gMoney))
            gLock.release()

def main():
    for x in range(5):
        Consumer(name='消费者线程%d'%x).start()

    for x in range(5):
        Producer(name='生产者线程%d'%x).start()

if __name__ == '__main__':
    main()

Condition版的生产者与消费者模式:

Lock版本的生产者与消费者模式可以正常的运行。但是存在一个不足,在消费者中,总是通过while True死循环并且上锁的方式去判断钱够不够。上锁是一个很耗费CPU资源的行为。因此这种方式不是最好的。还有一种更好的方式便是使用threading.Condition来实现。threading.Condition可以在没有数据的时候处于阻塞等待状态。一旦有合适的数据了,还可以使用notify相关的函数来通知其他处于等待状态的线程。这样就可以不用做一些无用的上锁和解锁的操作。可以提高程序的性能。首先对threading.Condition相关的函数做个介绍,threading.Condition类似threading.Lock,可以在修改全局数据的时候进行上锁,也可以在修改完毕后进行解锁。以下将一些常用的函数做个简单的介绍:

acquire:上锁。

release:解锁。

wait:将当前线程处于等待状态,并且会释放锁。可以被其他线程使用notify和notify_all函数唤醒。被唤醒后会继续等待上锁,上锁后继续执行下面的代码。

notify:通知某个正在等待的线程,默认是第1个等待的线程。

notify_all:通知所有正在等待的线程。notify和notify_all不会释放锁。并且需要在release之前调用。

Condition版的生产者与消费者模式代码如下:

import threading
import random
import time

gMoney = 1000
gCondition = threading.Condition()
gTimes = 0
gTotalTimes = 5

class Producer(threading.Thread):
    def run(self):
        global gMoney
        global gCondition
        global gTimes
        while True:
            money = random.randint(100, 1000)
            gCondition.acquire()
            if gTimes >= gTotalTimes:
                gCondition.release()
                print('当前生产者总共生产了%s次'%gTimes)
                break
            gMoney += money
            print('%s当前存入%s元钱,剩余%s元钱' % (threading.current_thread(), money, gMoney))
            gTimes += 1
            time.sleep(0.5)
            gCondition.notify_all()
            gCondition.release()

class Consumer(threading.Thread):
    def run(self):
        global gMoney
        global gCondition
        while True:
            money = random.randint(100, 500)
            gCondition.acquire()
            # 这里要给个while循环判断,因为等轮到这个线程的时候
            # 条件有可能又不满足了
            while gMoney < money:
                if gTimes >= gTotalTimes:
                    gCondition.release()
                    return
                print('%s准备取%s元钱,剩余%s元钱,不足!'%(threading.current_thread(),money,gMoney))
                gCondition.wait()
            gMoney -= money
            print('%s当前取出%s元钱,剩余%s元钱' % (threading.current_thread(), money, gMoney))
            time.sleep(0.5)
            gCondition.release()

def main():
    for x in range(5):
        Consumer(name='消费者线程%d'%x).start()

    for x in range(2):
        Producer(name='生产者线程%d'%x).start()

if __name__ == '__main__':
    main()

Queue线程安全队列:

在线程中,访问一些全局变量,加锁是一个经常的过程。如果你是想把一些数据存储到某个队列中,那么Python内置了一个线程安全的模块叫做queue模块。Python中的queue模块中提供了同步的、线程安全的队列类,包括FIFO(先进先出)队列Queue,LIFO(后入先出)队列LifoQueue。这些队列都实现了锁原语(可以理解为原子操作,即要么不做,要么都做完),能够在多线程中直接使用。可以使用队列来实现线程间的同步。相关的函数如下:

初始化Queue(maxsize):创建一个先进先出的队列。

qsize():返回队列的大小。

empty():判断队列是否为空。

full():判断队列是否满了。

get():从队列中取最后一个数据。

put():将一个数据放到队列中。

使用生产者与消费者模式多线程下载表情包:

import threading
import requests
from lxml import etree
from urllib import request
import os
import re
from queue import Queue

class Producer(threading.Thread):
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36'
    }
    def __init__(self,page_queue,img_queue,*args,**kwargs):
        super(Producer, self).__init__(*args,**kwargs)
        self.page_queue = page_queue
        self.img_queue = img_queue


    def run(self):
        while True:
            if self.page_queue.empty():
                break
            url = self.page_queue.get()
            self.parse_page(url)

    def parse_page(self,url):
        response = requests.get(url,headers=self.headers)
        text = response.text
        html = etree.HTML(text)
        imgs = html.xpath("//div[@class='page-content text-center']//a//img")
        for img in imgs:
            if img.get('class') == 'gif':
                continue
            img_url = img.xpath(".//@data-original")[0]
            suffix = os.path.splitext(img_url)[1]
            alt = img.xpath(".//@alt")[0]
            alt = re.sub(r'[,。??,/\\·]','',alt)
            img_name = alt + suffix
            self.img_queue.put((img_url,img_name))

class Consumer(threading.Thread):
    def __init__(self,page_queue,img_queue,*args,**kwargs):
        super(Consumer, self).__init__(*args,**kwargs)
        self.page_queue = page_queue
        self.img_queue = img_queue

    def run(self):
        while True:
            if self.img_queue.empty():
                if self.page_queue.empty():
                    return
            img = self.img_queue.get(block=True)
            url,filename = img
            request.urlretrieve(url,'images/'+filename)
            print(filename+'  下载完成!')

def main():
    page_queue = Queue(100)
    img_queue = Queue(500)
    for x in range(1,101):
        url = "http://www.doutula.com/photo/list/?page=%d" % x
        page_queue.put(url)

    for x in range(5):
        t = Producer(page_queue,img_queue)
        t.start()

    for x in range(5):
        t = Consumer(page_queue,img_queue)
        t.start()

if __name__ == '__main__':
    main()

GIL全局解释器锁:

Python自带的解释器是CPython。CPython解释器的多线程实际上是一个假的多线程(在多核CPU中,只能利用一核,不能利用多核)。同一时刻只有一个线程在执行,为了保证同一时刻只有一个线程在执行,在CPython解释器中有一个东西叫做GIL(Global Intepreter Lock),叫做全局解释器锁。这个解释器锁是有必要的。因为CPython解释器的内存管理不是线程安全的。当然除了CPython解释器,还有其他的解释器,有些解释器是没有GIL锁的,见下面:

Jython:用Java实现的Python解释器。不存在GIL锁。

IronPython:用.net实现的Python解释器。不存在GIL锁。

PyPy:用Python实现的Python解释器。存在GIL锁。

GIL虽然是一个假的多线程。但是在处理一些IO操作(比如文件读写和网络请求)还是可以在很大程度上提高效率的。在IO操作上建议使用多线程提高效率。在一些CPU计算操作上不建议使用多线程,而建议使用多进程。

多线程作业:

import requests
from lxml import etree
import threading
from queue import Queue
import csv


class BSSpider(threading.Thread):
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36'
    }
    def __init__(self,page_queue,joke_queue,*args,**kwargs):
        super(BSSpider, self).__init__(*args,**kwargs)
        self.base_domain = 'http://jshk.com.cn'
        self.page_queue = page_queue
        self.joke_queue = joke_queue

    def run(self):
        while True:
            if self.page_queue.empty():
                break
            url = self.page_queue.get()
            response = requests.get(url, headers=self.headers)
            text = response.text
            html = etree.HTML(text)
            descs = html.xpath("//div[@class='j-r-list-c-desc']")
            for desc in descs:
                jokes = desc.xpath(".//text()")
                joke = "\n".join(jokes).strip()
                link = self.base_domain+desc.xpath(".//a/@href")[0]
                self.joke_queue.put((joke,link))
            print('='*30+"第%s页下载完成!"%url.split('/')[-1]+"="*30)

class BSWriter(threading.Thread):
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36'
    }

    def __init__(self, joke_queue, writer,gLock, *args, **kwargs):
        super(BSWriter, self).__init__(*args, **kwargs)
        self.joke_queue = joke_queue
        self.writer = writer
        self.lock = gLock

    def run(self):
        while True:
            try:
                joke_info = self.joke_queue.get(timeout=40)
                joke,link = joke_info
                self.lock.acquire()
                self.writer.writerow((joke,link))
                self.lock.release()
                print('保存一条')
            except:
                break

def main():
    page_queue = Queue(10)
    joke_queue = Queue(500)
    gLock = threading.Lock()
    fp = open('bsbdj.csv', 'a',newline='', encoding='utf-8')
    writer = csv.writer(fp)
    writer.writerow(('content', 'link'))

    for x in range(1,11):
        url = 'Bad Request' % x
        page_queue.put(url)

    for x in range(5):
        t = BSSpider(page_queue,joke_queue)
        t.start()

    for x in range(5):
        t = BSWriter(joke_queue,writer,gLock)
        t.start()

if __name__ == '__main__':
    main()

标签:__,进阶,self,爬虫,queue,threading,线程,多线程,def
From: https://www.cnblogs.com/q-q56731526/p/17246172.html

相关文章

  • Day 18 18.1 并发爬虫之协程实现
    并发爬虫之协程实现协程,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程。协程拥有自己的寄存器上下文和栈。协程调度切换时,将......
  • 爬取的数据,存到mysql中、爬虫和下载中间件、加代理,cookie,header,加入selenium、去重规
    目录0爬取的数据,存到mysql中1爬虫和下载中间件2加代理,cookie,header,加入selenium2.1加代理2.2加cookie,修改请求头,随机生成UserAgent2.3集成selenium3去重规则源码......
  • 爬虫6
    今日内容0爬取的数据,存到mysql中#存到mysql中classFirstscrapyMySqlPipeline:defopen_spider(self,spider):print('我开了')self.conn=p......
  • Python互联网大数据爬虫的武汉市二手房价格数据采集分析:Linear Regression模型、XGBoo
    全文链接:http://tecdat.cn/?p=31958原文出处:拓端数据部落公众号分析师:YanLiu我国有大量的资金都流入了房地产行业,同时与其他行业有着千丝万缕的联系,可以说房地产行业对......
  • 分布式网页爬虫 Ebot
    Ebot是一个用ErLang语言开发的可伸缩的分布式网页爬虫,URLs被保存在数据库中可通过RESTful的HTTP请求来查询。​​matteoredaelli​​​/​​ebot​​......
  • 网络爬虫读取js生成的页面
    还有js逻辑的页面,对网络爬虫的信息抓取工作造成了很大障碍。DOM树,只有执行了js的逻辑才可以完整的呈现。而有的时候,有要对js修改后的dom树进行解析。在搜寻了大量资料后,发......
  • NodeJS 多线程编程
    一、开发环境Node.JSv14.8.0二、快速开始-worker_threadsjs和nodejs一直都是单线程,直到官方推出了worker_threads模块,用来解决CPU密集型计算场景。可以通过......
  • C# 多线程访问之 SemaphoreSlim(信号量)【进阶篇】
    C#多线程访问之SemaphoreSlim(信号量)【进阶篇】 阅读目录一、简介二、用法示例 三、属性or函数or方法释义属性-AvailableWaitHandle属性-CurrentCount......
  • 一统天下 flutter - 路由和导航: 路由和导航的进阶
    一统天下flutterhttps://github.com/webabcd/flutter_demo作者webabcd一统天下flutter-路由和导航:路由和导航的进阶示例如下:lib\route\navigator2.dart/*......
  • 几步完成Python爬虫采集附源码
    对于长期做爬虫行业的程序员我来说,现在随便编写一个爬虫程序也只是分分钟的事情,这次我编辑一个有关图文采集的爬虫,从试错到下载保存等一些列重点全部都写入下面的文章中希望......