先考虑怎样的图可以染色或者不能染色。容易发现,1 和 3 不能相邻,它们其实是等价的。那么能染色的必要条件就是所有的子图都是二分图。此外,每个二分图都取左部或者右部之一,顶点数量之和需要正好等于 \(n_2\)。
于是这个问题转化成了普通的背包 dp,转移的时候记录一下就好了。
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define pb push_back
#define endl '\n'
using ll = long long;
using pii = pair<int, int>;
const int maxn = 5e3 + 5;
vector<int> g[maxn];
int vis[maxn], cnt, col[maxn];
vector<pii> color;
int dp[maxn][maxn];
bool ok;
void dfs(int u, int f, bool flag) {
if (!ok) return;
if (vis[u] == -1) {
vis[u] = cnt;
col[u] = flag;
} else if (col[u] == flag) {
return;
} else {
ok = false;
return;
}
if (!flag) color[cnt].first++;
else color[cnt].second++;
for (auto v : g[u]) {
if (v == f) continue;
dfs(v, u, !flag);
}
}
void solve() {
int n, m;
cin >> n >> m;
int n1, n2, n3;
cin >> n1 >> n2 >> n3;
for (int i = 1, u, v; i <= m; ++i) {
cin >> u >> v;
g[u].pb(v), g[v].pb(u);
}
memset(vis, -1, sizeof(vis));
ok = true;
color.pb({ 0, 0 });
for (int i = 1; i <= n; ++i) {
if (vis[i] == -1 && ok) {
cnt++;
color.pb({ 0, 0 });
dfs(i, 0, 0);
}
}
if (!ok) {
cout << "NO\n" << endl;
return;
}
dp[0][0] = 1;
for (int i = 1; i <= cnt; ++i) {
for (int j = 0; j <= n; ++j) {
auto [L, R] = color[i];
if (j >= L && dp[i - 1][j - L]) {
dp[i][j] = -1;
}
if (j >= R && dp[i - 1][j - R]) {
dp[i][j] = 1;
}
}
}
if (!dp[cnt][n2]) {
cout << "NO\n" << endl;
return;
}
cout << "YES\n";
vector<int> ans(n + 1);
vector<int> chk(cnt + 1);
int tot = n2;
for (int i = cnt; i >= 1; --i) {
auto [L, R] = color[i];
if (dp[i][tot] == 1) {
tot -= R;
chk[i] = 1;
} else {
tot -= L;
chk[i] = 0;
}
}
for (int i = 1; i <= n; ++i) {
int cur = vis[i];
ans[i] = (chk[cur] == col[i]) + 1;
if (ans[i] == 1) {
if (n1) n1--;
else ans[i] = 3;
}
}
for (int i = 1; i <= n; ++i)
cout << ans[i];
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int T = 1;
// cin >> T;
while (T--) {
solve();
}
}
标签:cnt,Coloring,vis,int,Graph,CF,color,maxn,dp
From: https://www.cnblogs.com/theophania/p/p41.html