首页 > 其他分享 >数据挖掘(第四周)

数据挖掘(第四周)

时间:2023-03-15 15:22:05浏览次数:38  
标签:sort plt csv selected 数据挖掘 四周 data id

# 代码8-1 查看数据特征

import numpy as np
import pandas as pd

inputfile = r'C:\Users\86138\Downloads\data\数据挖掘与分析\GoodsOrder.csv'   # 输入的数据文件
data = pd.read_csv(inputfile,encoding = 'gbk')  # 读取数据
data .info()  # 查看数据属性

data = data['id']
description = [data.count(),data.min(), data.max()]  # 依次计算总数、最小值、最大值
description = pd.DataFrame(description, index = ['Count','Min', 'Max']).T  # 将结果存入数据框
print('描述性统计结果_3039:\n',np.round(description))  # 输出结果

 

 

  

# 代码8-2 分析热销商品

# 销量排行前10商品的销量及其占比
import pandas as pd
inputfile = r'C:\Users\86138\Downloads\data\数据挖掘与分析\GoodsOrder.csv'  # 输入的数据文件
data = pd.read_csv(inputfile,encoding = 'gbk')  # 读取数据
group = data.groupby(['Goods']).count().reset_index()  # 对商品进行分类汇总
sorted=group.sort_values('id',ascending=False)
print('销量排行前10商品的销量_3039:\n', sorted[:10])  # 排序并查看前10位热销商品

# 画条形图展示出销量排行前10商品的销量
import matplotlib.pyplot as plt
x=sorted[:10]['Goods']
y=sorted[:10]['id']
plt.figure(figsize = (8, 4))  # 设置画布大小 
plt.barh(x,y)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.xlabel('销量')  # 设置x轴标题
plt.ylabel('商品类别')  # 设置y轴标题
plt.title('商品的销量TOP10_3039')  # 设置标题
plt.savefig(r'C:\Users\86138\Downloads\data\数据挖掘与分析\top10_3039.png')  # 把图片以.png格式保存
plt.show()  # 展示图片

# 销量排行前10商品的销量占比
data_nums = data.shape[0]
for idnex, row in sorted[:10].iterrows():
    print(row['Goods'],row['id'],row['id']/data_nums)

 

 条形图如下:

 

 



  

# 代码8-3 各类别商品的销量及其占比

import pandas as pd
inputfile1 = r'C:\Users\86138\Downloads\data\数据挖掘与分析\GoodsOrder.csv'
inputfile2 = r'C:\Users\86138\Downloads\data\数据挖掘与分析\GoodsTypes.csv'
data = pd.read_csv(inputfile1,encoding = 'gbk')
types = pd.read_csv(inputfile2,encoding = 'gbk')  # 读入数据

group = data.groupby(['Goods']).count().reset_index()
sort = group.sort_values('id',ascending = False).reset_index()
data_nums = data.shape[0]  # 总量
del sort['index']

sort_links = pd.merge(sort,types)  # 合并两个datafreame 根据type
# 根据类别求和,每个商品类别的总量,并排序
sort_link = sort_links.groupby(['Types']).sum().reset_index()
sort_link = sort_link.sort_values('id',ascending = False).reset_index()
del sort_link['index']  # 删除“index”列

# 求百分比,然后更换列名,最后输出到文件
sort_link['count'] = sort_link.apply(lambda line: line['id']/data_nums,axis=1)
sort_link.rename(columns = {'count':'percent'},inplace = True)
print('各类别商品的销量及其占比_3039:\n',sort_link)
outfile1 = r'C:\Users\86138\Downloads\data\数据挖掘与分析\percent.csv'
sort_link.to_csv(outfile1,index = False,header = True,encoding='gbk')  # 保存结果

# 画饼图展示每类商品销量占比
import matplotlib.pyplot as plt
data = sort_link['percent']
labels = sort_link['Types']
plt.figure(figsize=(8, 6))  # 设置画布大小   
plt.pie(data,labels=labels,autopct='%1.2f%%')
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title('每类商品销量占比_3039')  # 设置标题
plt.savefig(r'C:\Users\86138\Downloads\data\数据挖掘与分析\persent_3039.png')  # 把图片以.png格式保存
plt.show()

 

 饼状图如下:

 

 

 

  

# 代码8-4 酒精饮料内部商品的销量及其占比

# 先筛选“酒精饮料”类型的商品,然后求百分比,然后输出结果到文件。
selected = sort_links.loc[sort_links['Types'] == '酒精饮料']  # 挑选商品类别为“非酒精饮料”并排序
child_nums = selected['id'].sum()  # 对所有的“酒精饮料”求和
selected['child_percent'] = selected.apply(lambda line: line['id']/child_nums,axis = 1)  # 求百分比
selected.rename(columns = {'id':'count'},inplace = True)
print('酒精饮料内部商品的销量及其占比_3039:\n',selected)
outfile2 = r'C:\Users\86138\Downloads\data\数据挖掘与分析\child_percent.csv'
sort_link.to_csv(outfile2,index = False,header = True,encoding='gbk')  # 输出结果

# 画饼图展示酒精饮品内部各商品的销量占比
import matplotlib.pyplot as plt
data = selected['child_percent']
labels = selected['Goods']
plt.figure(figsize = (8,6))  # 设置画布大小 
explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3)  # 设置每一块分割出的间隙大小
plt.pie(data,explode = explode,labels = labels,autopct = '%1.2f%%',
        pctdistance = 1.1,labeldistance = 1.2)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title("酒精饮料内部各商品的销量占比_3039")  # 设置标题
plt.axis('equal')
plt.savefig( r'C:\Users\86138\Downloads\data\数据挖掘与分析\child_percent_3039.png')  # 保存图形
plt.show()  # 展示图形
饼图如下:

 

  

# 代码8-4 非酒精饮料内部商品的销量及其占比

# 先筛选“非酒精饮料”类型的商品,然后求百分比,然后输出结果到文件。
selected = sort_links.loc[sort_links['Types'] == '非酒精饮料']  # 挑选商品类别为“非酒精饮料”并排序
child_nums = selected['id'].sum()  # 对所有的“非酒精饮料”求和
selected['child_percent'] = selected.apply(lambda line: line['id']/child_nums,axis = 1)  # 求百分比
selected.rename(columns = {'id':'count'},inplace = True)
print('非酒精饮料内部商品的销量及其占比_3039:\n',selected)
outfile2 = r'C:\Users\86138\Downloads\data\数据挖掘与分析\child_percent.csv'
sort_link.to_csv(outfile2,index = False,header = True,encoding='gbk')  # 输出结果

# 画饼图展示非酒精饮品内部各商品的销量占比
import matplotlib.pyplot as plt
data = selected['child_percent']
labels = selected['Goods']
plt.figure(figsize = (8,6))  # 设置画布大小 
explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3)  # 设置每一块分割出的间隙大小
plt.pie(data,explode = explode,labels = labels,autopct = '%1.2f%%',
        pctdistance = 1.1,labeldistance = 1.2)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title("非酒精饮料内部各商品的销量占比_3039")  # 设置标题
plt.axis('equal')
plt.savefig( r'C:\Users\86138\Downloads\data\数据挖掘与分析\child_percent_3039.png')  # 保存图形
plt.show()  # 展示图形

 

饼图如下:

  

# 代码8-5 数据转换

import pandas as pd
inputfile=r'C:\Users\86138\Downloads\data\数据挖掘与分析\GoodsOrder.csv'
data = pd.read_csv(inputfile,encoding = 'gbk')

# 根据id对“Goods”列合并,并使用“,”将各商品隔开
data['Goods'] = data['Goods'].apply(lambda x:','+x)
data = data.groupby('id').sum().reset_index()

# 对合并的商品列转换数据格式
data['Goods'] = data['Goods'].apply(lambda x :[x[1:]])
data_list = list(data['Goods'])

# 分割商品名为每个元素
data_translation = []
for i in data_list:
    p = i[0].split(',')
    data_translation.append(p)
print('数据转换结果的前5个元素_3039:\n', data_translation[0:5])

 

 

  

标签:sort,plt,csv,selected,数据挖掘,四周,data,id
From: https://www.cnblogs.com/Karry0921/p/17218678.html

相关文章

  • 第四周
    #-*-coding:utf-8-*-"""CreatedonWedMar1514:54:042023@author:10320"""importpandasaspdinputfile='D:\大三\数据分析\第四周\实训4\GoodsOrder.c......
  • 易基因:染色质免疫共沉淀测序(ChIP-seq)的数据挖掘思路 |干货系列
    大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。CHIP-seq研究的数据挖掘思路主要分为3步:整体把握CHIP-seq图谱特征:peak/reads在基因组上的分布、peak......
  • 数据挖掘(2.2)--数据预处理
    目录​​二、数据描述​​​​1.描述数据中心趋势​​​​1.1平均值和截断均值 ​​​​1.2加权平均值​​​​1.3中位数(Median)和众数(Mode)​​​​2.描述数据的分散程度......
  • 数据挖掘(第三周)
    #客户城市分析importnumpyasnpimportmatplotlib.pyplotaspltfromdatetimeimportdatetimeimportseabornassnsfromsklearn.preprocessingimportStandard......
  • SAS数据挖掘EM贷款违约预测分析:逐步Logistic逻辑回归、决策树、随机森林
    全文链接:http://tecdat.cn/?p=31745原文出处:拓端数据部落公众号近几年来,各家商业银行陆续推出多种贷款业务,如何识别贷款违约因素已经成为各家商业银行健康有序发展贷款业......
  • 数据挖掘(2.1)--数据预处理
    一、基础知识1.数据的基本概念1.1基础知识数据是数据对象(DataObjects)及其属性(Attributes)的集合。数据对象(一条记录、一个实体、一个案例、一个样本等)是对一个事物或......
  • 数据挖掘第二周
    importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsimportsysfromGM11importGM11inputfile='../data/data.csv'......
  • 数据挖掘2
    1、importnumpyasnpimportpandasaspdinputfile='D:/WeixinWenjian/WeChatFiles/wxid_5onnacvxxvpj22/FileStorage/File/2023-03/data.csv'data=pd.read_csv(i......
  • 数据挖掘(1)--基础知识学习
    前言自20世纪90年代以来,随着数据库技术应用的普及,数据挖掘( Data Mining )技术已经引起了学术界、产业界的极大关注,其主要原因是当前各个单位已经存储了超大规模,即海量规模......
  • 大数据挖掘-python基本绘图函数学习
    1-plot绘制线型图plot是python中最基本的绘制二维线性折线图的函数基本使用方式:plt.plot(x,y,s)代码实现:importmatplotlib.pyplotaspltimportnumpyasnpimport......