代码一:读取数据
import pandas as pd datafile='E:\\code\\PythonCode\\datas\\air_data.csv' resultfile='E:\\code\\PythonCode\\datas\\explore.csv' data = pd.read_csv(datafile,encoding = 'utf-8') explore = data.describe(percentiles = [],include = 'all').T explore['null'] = len(data)-explore['count'] explore = explore[['null','max','min']] explore.columns = [u'空值数',u'最大值',u'最小值'] explore.to_csv(resultfile) print(explore)
代码二:分析数据并绘制基本图像
from datetime import datetime import matplotlib.pyplot as plt ffp=data['FFP_DATE'].apply(lambda x:datetime.strptime(x,'%Y/%m/%d')) ffp_year=ffp.map(lambda x:x.year) #绘制各年份会员入会人数直方图 fig=plt.figure(figsize=(8,5)) plt.rcParams['font.sans-serif']='SimHei' plt.rcParams['axes.unicode_minus']='False' plt.hist(ffp_year,bins='auto',color='#0504aa') plt.xlabel('年份') plt.ylabel('入会人数') plt.title('各年份会员入会人数(3135)',fontsize=15) plt.show() plt.close #提取会员不同性别人数 male=pd.value_counts(data['GENDER'])['男'] female=pd.value_counts(data['GENDER'])['女'] #绘制会员性别比例饼图 fig=plt.figure(figsize=(10,6)) plt.pie([male,female],labels=['男','女'],colors=['lightskyblue','lightcoral'],autopct='%1.1f%%') plt.title('会员性别比例(3135)',fontsize=15) plt.show() plt.close() #提取不同级别会员人数 lv_four=pd.value_counts(data['FFP_TIER'])[4] lv_five=pd.value_counts(data['FFP_TIER'])[5] lv_six=pd.value_counts(data['FFP_TIER'])[6] #绘制会员各级别人数条形图 fig=plt.figure(figsize=(8,5)) plt.bar(x=range(3),height=[lv_four,lv_five,lv_six],width=0.4,alpha=0.8,color='skyblue') plt.xticks([index for index in range(3)],['4','5','6']) plt.xlabel('会员等级') plt.ylabel('会员人数') plt.title('会员各级别人数(3135)',fontsize=15) plt.show() plt.close #提取会员年龄 age=data['AGE'].dropna() age=age.astype('int64') #绘制会员年龄分布箱型图 fig=plt.figure(figsize=(5,10)) plt.boxplot(age, patch_artist=True, labels=['会员年龄'], boxprops={'facecolor':'lightblue'}) plt.title('会员年龄分布箱型图(3135)',fontsize=15) plt.grid(axis='y') plt.show() plt.close()
代码三:客户乘机数据分析箱型图
lte=data['LAST_TO_END'] fc=data['FLIGHT_COUNT'] sks=data['SEG_KM_SUM'] #绘制最后乘机至结束时长箱型图 fig=plt.figure(figsize=(5,8)) plt.boxplot(lte, patch_artist=True, labels=['时长'], boxprops={'facecolor':'lightblue'}) plt.title('会员最后乘机至结束时长分布箱型图(3111)',fontsize=15) plt.grid(axis='y') plt.show() plt.close #绘制客户飞行次数箱型图 fig=plt.figure(figsize=(5,8)) plt.boxplot(fc, patch_artist=True, labels=['飞行次数'], boxprops={'facecolor':'lightblue'}) plt.title('会员飞行次数分布箱型图(3111)',fontsize=15) plt.grid(axis='y') plt.show() plt.close #绘制客户总飞行公里数箱型图 fig=plt.figure(figsize=(5,10)) plt.boxplot(sks, patch_artist=True, labels=['总飞行公里数'], boxprops={'facecolor':'lightblue'}) plt.title('客户总飞行公里数箱型图(3111)',fontsize=15) plt.grid(axis='y') plt.show() plt.close
代码四:会员积分数据分析直方图
#积分信息类别 #提取会员积分兑换次数 ec=data['EXCHANGE_COUNT'] #绘制会员兑换积分次数直方图 fig=plt.figure(figsize=(8,5)) plt.hist(ec,bins=5,color='#0504aa') plt.xlabel('兑换次数') plt.ylabel('会员人数') plt.title('会员兑换积分次数直方图(3111)',fontsize=15) plt.show() plt.close #提取会员总累计积分 ps=data['Points_Sum'] #绘制会员总累计积分箱型图 fig=plt.figure(figsize=(5,8)) plt.boxplot(ps, patch_artist=True, labels=['总累计积分'], boxprops={'facecolor':'lightblue'}) plt.title('客户总累计积分箱型图(3111)',fontsize=15) plt.grid(axis='y') plt.show() plt.close
代码五:相关矩阵及热力图
#提取属性并合并为新数据集 data_corr=data[['FFP_TIER','FLIGHT_COUNT','LAST_TO_END','SEG_KM_SUM','EXCHANGE_COUNT','Points_Sum']] age1=data['AGE'].fillna(0) data_corr['AGE']=age1.astype('int64') data_corr['ffp_year']=ffp_year #计算相关性矩阵 dt_corr=data_corr.corr(method='pearson') print('相关性矩阵为:\n',dt_corr) #绘制热力图 import seaborn as sns plt.subplots(figsize=(10,10)) sns.heatmap(dt_corr,annot=True,vmax=1,square=True,cmap='Blues') plt.show() plt.close
代码六:进行数据清洗
import numpy as np import pandas as pd datafile ='E:\\code\\PythonCode\\datas\\air_data.csv' cleanedfile='E:\\code\\PythonCode\\datas\\data_cleaned.csv' #读取数据 airline_data=pd.read_csv(datafile,encoding='utf-8') print('原始数据的形状为:',airline_data.shape) #去除票价为空的记录 airline_notnull=airline_data.loc[airline_data['SUM_YR_1'].notnull()&airline_data['SUM_YR_2'].notnull(),:] print('删除缺失记录后数据的形状为:',airline_notnull.shape) #只保留票价非零的,或者平均折扣率不为0且总飞行公里数大于0的记录 index1=airline_notnull['SUM_YR_1']!=0 index2=airline_notnull['SUM_YR_2']!=0 index3=(airline_notnull['SEG_KM_SUM']>0)&(airline_notnull['avg_discount']!=0) index4=airline_notnull['AGE']>100#去除年龄大于100的记录 airline=airline_notnull[(index1|index2)&index3&~index4] print('数据清洗后数据的形状为:',airline.shape) airline.to_csv(cleanedfile)
代码七:属性选择
import pandas as pd import numpy as np #读取数据清洗后的数据 cleanedfile='E:\\code\\PythonCode\\datas\\data_cleaned.csv' airline=pd.read_csv(cleanedfile,encoding='utf-8') #选取需求属性 airline_selection=airline[['FFP_DATE','LOAD_TIME','LAST_TO_END','FLIGHT_COUNT','SEG_KM_SUM','avg_discount']] print('筛选的属性前5行为:\n',airline_selection.head())
代码八:属性构造与数据标准化
# 构造属性L
L = pd.to_datetime(airline_selection['LOAD_TIME']) - pd.to_datetime(airline_selection['FFP_DATE'])
L = L.astype('str').str.split().str[0]
L = L.astype('int')/30
# 合并属性
airline_features = pd.concat([L,airline_selection.iloc[:,2:]],axis=1)
print('构建的LRFMC属性前5行为:\n', airline_features.head())
# 数据标准化
from sklearn.preprocessing import StandardScaler
data = StandardScaler().fit_transform(airline_features)
np.savez("E:\\code\\PythonCode\\datas\\airline_scale.npz", data)
print('标准化后LRFMC 5个属性为:\n', data[:5,:])
代码九:K-Meas聚类标准化后的数据
import pandas as pd import numpy as np from sklearn.cluster import KMeans #导入K-Mmeans算法 #读取标准化后的数据 airline_scale = np.load("E:\\code\\PythonCode\\datas\\airline_scale.npz")['arr_0'] k = 5 #确定聚类中心数 #构建模型,随机种子设为123 kmeans_model = KMeans(n_clusters=k,random_state=123) fit_kmeans = kmeans_model.fit(airline_scale) #模型训练 #查看聚类结果 kmeans_cc = kmeans_model.cluster_centers_ #聚类中心 print('各聚类中心为:\n',kmeans_cc) kmeans_labels = kmeans_model.labels_ #样本的类别标签 print('各样本的类别标签为:\n',kmeans_labels) r1 = pd.Series(kmeans_model.labels_).value_counts() #统计不同类别样本的数目 print('最终每个类别的数目为:\n',r1) #输出聚类分群的结果 cluster_center = pd.DataFrame(kmeans_model.cluster_centers_,\ columns = ['ZL','ZR','ZF','ZM','ZC']) #将聚类中心放在数据中 cluster_center.index = pd.DataFrame(kmeans_model.labels_).\ drop_duplicates().iloc[:,0] #将样本类别作为数据框索引 print(cluster_center)
代码十:绘制客户分群雷达图
# 代码7-10 绘制客户分群雷达图 %matplotlib inline import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn.cluster import KMeans #导入K-Mmeans算法 # 客户分群雷达图 labels = ['ZL','ZR','ZF','ZM','ZC'] legen = ['客户群' + str(i + 1) for i in cluster_center.index] # 客户群命名 lstype = ['-', '--', (0, (3,5,1,5,1,5)), ':', '-.'] kinds = list(cluster_center.iloc[:, 0]) # 由于雷达图要保证数据闭合,因此再添加L列,并转换为np.ndarray cluster_center = pd.concat([cluster_center, cluster_center[['ZL']]], axis=1) centers = np.array(cluster_center.iloc[:, 0:]) # 分割圆周长,并让其闭合 n = len(labels) angle = np.linspace(0, 2*np.pi, n, endpoint=False) angle = np.concatenate((angle, [angle[0]])) #绘图 fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(111,polar=True) #以极坐标的形式绘制图形 plt.rcParams['font.sans-serif'] = 'SimHei' #设置中文显示 plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号 #画线 for i in range(len(kinds)): ax.plot(angle,centers[i],linestyle=lstype[i],linewidth=2,label=kinds[i]) #添加属性标签 ax.set_thetagrids(angle * 180 / np.pi,labels) plt.title('客户特征分析雷达图(学号3111)') plt.legend(legen) plt.show() plt.close
标签:数据分析,飞机,plt,客户,会员,airline,pd,import,data From: https://www.cnblogs.com/2479308859qq/p/17213312.html