首页 > 其他分享 >题解 ABC293E【Geometric Progression】

题解 ABC293E【Geometric Progression】

时间:2023-03-12 09:14:13浏览次数:64  
标签:return Matrix 题解 ll bmatrix ABC293E Geometric define mat

由于模数不一定是大质数,我们不能直接套等比数列求和公式。

换一种思路,数列 \(\langle1,A,A^2,\cdots,A^{X-1}\rangle\) 可以看做线性递推,因此设计矩阵:

\[\boldsymbol T= \begin{bmatrix} A & 0 \\ 1 & 1 \\ \end{bmatrix} \]

显然有:

\[\begin{bmatrix} A^i \\ S_{i-1} \\ \end{bmatrix} \boldsymbol T = \begin{bmatrix} A^{i+1}\\ S_i \\ \end{bmatrix} \]

因此 \(\boldsymbol T^X\) 的左下角元素即为答案。

时间复杂度 \(\mathcal O(\log X)\)。

// Problem: E - Geometric Progression
// Contest: AtCoder - AtCoder Beginner Contest 293
// URL: https://atcoder.jp/contests/abc293/tasks/abc293_e
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

//By: OIer rui_er
#include <bits/stdc++.h>
#define rep(x,y,z) for(ll x=(y);x<=(z);x++)
#define per(x,y,z) for(ll x=(y);x>=(z);x--)
#define debug(format...) fprintf(stderr, format)
#define fileIO(s) do{freopen(s".in","r",stdin);freopen(s".out","w",stdout);}while(false)
#define likely(exp) __builtin_expect(!!(exp), 1)
#define unlikely(exp) __builtin_expect(!!(exp), 0)
using namespace std;
typedef long long ll;

mt19937 rnd(std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::system_clock::now().time_since_epoch()).count());
ll randint(ll L, ll R) {
	uniform_int_distribution<ll> dist(L, R);
	return dist(rnd);
}

template<typename T> void chkmin(T& x, T y) {if(x > y) x = y;}
template<typename T> void chkmax(T& x, T y) {if(x < y) x = y;}

ll a, x, m;

struct Matrix {
	ll a[2][2];
	Matrix() {memset(a, 0, sizeof(a));}
	friend Matrix operator*(const Matrix& a, const Matrix& b) {
		Matrix c;
		rep(i, 0, 1) rep(j, 0, 1) rep(k, 0, 1) (c.a[i][j] += a.a[i][k] * b.a[k][j] % m) %= m;
		return c;
	}
	friend Matrix operator^(Matrix a, ll k) {
		Matrix c;
		c.a[0][0] = c.a[1][1] = 1;
		for(; k; k >>= 1, a = a * a) if(k & 1) c = c * a;
		return c;
	}
}mat;

/*
u * a 0 = a*u
s   1 1   s+u
*/

int main() {
	scanf("%lld%lld%lld", &a, &x, &m);
	mat.a[0][0] = a % m;
	mat.a[1][0] = mat.a[1][1] = 1;
	mat = mat ^ x;
	printf("%lld\n", mat.a[1][0]);
	return 0;
}

标签:return,Matrix,题解,ll,bmatrix,ABC293E,Geometric,define,mat
From: https://www.cnblogs.com/ruierqwq/p/abc293e.html

相关文章

  • 题解 ABC293F【Zero or One】
    我们可以暴力检查进制数不超过\(B\)的是否符合要求;然后对于进制数大于\(B\)的,位数不超过\(\log_BN\),可以暴力枚举每一位的值然后二分进制数检查。代码中\(B=10^3\)......
  • 题解 ABC293G【Triple Index】
    莫队板子。类似于小B的询问,在移动指针过程中,维护每个数出现次数\(cnt_i\),同时维护\(\sum\binom{cnt_i}{3}\)即可。取序列分块块长\(B=\frac{n}{\sqrt{m}}\),有最优......
  • [ABC293E] Geometric Progression 题解
    [ABC293E]GeometricProgression题解神中神数论题目描述给定整数\(A,X,M\),求\[\sum_{i=0}^{X-1}A^i\bmodM\]\(1\leA,M\le10^9\)\(1\leX\le10^......
  • UVA12107 题解
    前言题目传送门!更好的阅读体验?很久以前的一道搜索大模拟题目,另一篇题解的写法有点鬼畜,所以就来补篇题解。题面给你一个数字谜。修改最少次数(每次修改一个数位为空格或......
  • [POI2001][HAOI2007] 反素数 题解
    前置知识:一些关于约数的小常识。唯一分解定理对于所有正整数\(n\),一定有唯一分解方式\(n=p_1^{c_1}p_2^{c_2}\cdotsp_m^{c_m}\),其中\(p_1<p_2<\cdots<p_m\),......
  • P3530[POI2012 FES-Festival] 题解
    题面链接简要题意对于数列\(\{v_n\}\),有两种约束\(v_i=v_j+1\)和\(v_i\gev_j\),问\(\{v_n\}\)最多有多少个不同的项。解法考虑先建图,注意到如果约束图是DAG,那么......
  • CF1795 G.Removal Sequences - 题解
    记\(N(u)\)表示图上与点\(u\)相邻的点,\(p_u=deg_u-a_u\),其中\(deg_u\)为无向图上点\(u\)的度数。首先要删除\(p_u=0\)的点,同时\(\forallv\inN(u),p_v......
  • CF888D Almost Identity Permutations 题解
    CF链接:AlmostIdentityPermutationsLuogu链接:AlmostIdentityPermutations${\scr\color{Aquamarine}{\text{Solution}}}$前言这好像是一道能用数学秒掉的题目但......
  • 「THUPC 2023 初赛」欺诈游戏 题解
    写点无脑做法。设走私者的策略是\(p_i\)概率选\(i\),检查官的策略是\(q_i\)概率选\(i\)。因为两者策略均最优,所以走私者选任意一个数得到的期望收益相同,检查官选任......
  • CF1802D题解
    CF1802D题解传送门更好的阅读体验简化题意:有n个商店,每个商店卖a,b两种商品,价格分别为\(a_i,b_i\),你需要在每个商店买一个商品,并且不能在所有商店都买同一种商品,最......