题目链接
思路
根据题目中的样例,可以进行拆分
\[1, 1×2, 1×3, 2×2, 1×5, 2×3, 2×4, 3×3, 3×4, 3×5 \]观察能发现,这些多项式能分成下面三组:
\[乘 2: 1×2, 2×2, 3×2, 4×2, 5×2, 6×2, 8×2, 9×2,… \\ 乘 3: 1×3, 2×3, 3×3, 4×3, 5×3, 6×3, 8×3, 9×3,… \\ 乘 5: 1×5, 2×5, 3×5, 4×5, 5×5, 6×5, 8×5, 9×5,… \\ \]可以发现新的丑数都是利用之前的丑数乘以2、3或者5计算得到的。
我们可以使用三个指针,分别指向乘以2、乘以3、乘以5的丑数的位置,每次取最小值再放入序列中,同时更新乘积与最小值相等的丑数索引,计算n次后便得到第n个丑数
代码
class Solution {
public int nthUglyNumber(int n) {
int[] weightIndex = new int[]{0, 0, 0};
int[] base = new int[]{2, 3, 5};
int[] currentNumber = new int[3];
ArrayList<Integer> uglyNumbers = new ArrayList<>();
uglyNumbers.add(1);
// we already have "1" in vector, we just need to do n-1 times
for(int i = 1; i < n; i++){
int min = uglyNumbers.get(weightIndex[0]) * base[0];
for(int j = 0; j < 3; j++){
currentNumber[j] = uglyNumbers.get(weightIndex[j]) * base[j];
min = Math.min(min, currentNumber[j]);
}
uglyNumbers.add(min);
if(min == currentNumber[0]){
weightIndex[0]++;
}
if(min == currentNumber[1]){
weightIndex[1]++;
}
if(min == currentNumber[2]){
weightIndex[2]++;
}
}
return uglyNumbers.get(n - 1);
}
}
标签:丑数,min,int,currentNumber,II,uglyNumbers,weightIndex,LeetCode
From: https://www.cnblogs.com/shixuanliu/p/17188231.html