本文展示了如何使用MathNet.Numerics对离散点进行曲线拟合,计算其R^2值,并基于Winform使用SkiaSharp.Views.WindowsForms绘制曲线及离散点,上述组件可从NuGet获取。
1、曲线拟合
使用Fit.Polynomial方法获取拟合后的多项式系数数组,其参数分别为x坐标数组、y坐标数组、曲线阶数,返回值用于计算多项式的值。
//曲线拟合 var x = _skOriginalPointList.Select(t => (double)t.X).ToArray(); var y = _skOriginalPointList.Select(t => (double)t.Y).ToArray(); _order = Math.Min(5, x.Length - 1); //曲线阶数 var ret = Fit.Polynomial(x, y, _order);
2、多项式的值计算
多项式的值计算方法:p0 + p1*x + p2*x^2 + ... + pk*x^k。
/// <summary> /// 获取多项式的值 /// </summary> /// <param name="order">阶数</param> /// <param name="x">x坐标</param> /// <param name="polynomialArray">多项式系数数组</param> /// <returns>Y坐标</returns> private static double GetPolynomialValue(int order, double x, double[] polynomialArray) => Enumerable.Range(0, order + 1) .Select(t => polynomialArray[t] * Math.Pow(x, t)) .Sum();
3、获取曲线
曲线绘制的宽高分别为width、height,那么x坐标从0开始,每间隔一定像素获取一个点,作为绘制曲线的点集合。
//获取拟合后的曲线 _skFittingPointList.Clear(); for (var i = 0; i <= width; i++) { var value = GetPolynomialValue(_order, i, ret); _skFittingPointList.Add(new SKPoint(i, (float)value)); i += 5; }
4、计算R^2值
//计算R^2,R^2这个值越接近1,说明拟合出来的曲线跟原曲线就越接近 var yTest = _skOriginalPointList.Select(point => GetPolynomialValue(_order, point.X, ret)) .ToArray(); _rSquared = GoodnessOfFit.RSquared(y, yTest);
5、曲线图展示
6、主要代码
using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Windows.Forms; using MathNet.Numerics; using SkiaSharp; using SkiaSharp.Views.Desktop; namespace MathSample { public partial class FormMain : Form { private readonly Point[] _originPoints; private readonly List<SKPoint> _skOriginalPointList; private readonly List<SKPoint> _skFittingPointList; private readonly SKControl _skiaView; private int _order; //曲线阶数 private double _rSquared; //R^2值 public FormMain() { InitializeComponent(); //原始点(百分比) _originPoints = new[] { new Point(16, 60), new Point(40, 20), new Point(52, 47), new Point(63, 85), new Point(87, 26) }; _skOriginalPointList = new List<SKPoint>(); _skFittingPointList = new List<SKPoint>(); //skiaView _skiaView = new SKControl { Dock = DockStyle.Fill, Location = new Point(0, 0), Name = "skiaView", TabIndex = 0 }; _skiaView.PaintSurface += skiaView_PaintSurface; } private void FormMain_Load(object sender, EventArgs e) { panel1.Controls.Add(_skiaView); ResizePanel(); DrawLines(); } private void FormMain_SizeChanged(object sender, EventArgs e) { ResizePanel(); DrawLines(); } private void ResizePanel() { panel1.Left = 10; panel1.Top = 10; panel1.Width = ClientSize.Width - 20; panel1.Height = ClientSize.Height - 20; } private void DrawLines() { var width = panel1.Width; var height = panel1.Height; _skOriginalPointList.Clear(); _skOriginalPointList.AddRange(_originPoints.Select(t => new SKPoint(t.X / 100f * width, (100 - t.Y) / 100f * height))); //曲线拟合 var x = _skOriginalPointList.Select(t => (double)t.X).ToArray(); var y = _skOriginalPointList.Select(t => (double)t.Y).ToArray(); _order = Math.Min(5, x.Length - 1); //曲线阶数 var ret = Fit.Polynomial(x, y, _order); //获取拟合后的曲线 _skFittingPointList.Clear(); for (var i = 0; i <= width; i++) { var value = GetPolynomialValue(_order, i, ret); _skFittingPointList.Add(new SKPoint(i, (float)value)); i += 5; } //计算R^2,R^2这个值越接近1,说明拟合出来的曲线跟原曲线就越接近 var yTest = _skOriginalPointList.Select(point => GetPolynomialValue(_order, point.X, ret)) .ToArray(); _rSquared = GoodnessOfFit.RSquared(y, yTest); //刷新画布 _skiaView.Refresh(); } /// <summary> /// 获取多项式的值 /// </summary> /// <param name="order">阶数</param> /// <param name="x">x坐标</param> /// <param name="polynomialArray">多项式系数数组</param> /// <returns>Y坐标</returns> private static double GetPolynomialValue(int order, double x, double[] polynomialArray) => Enumerable.Range(0, order + 1) .Select(t => polynomialArray[t] * Math.Pow(x, t)) .Sum(); private void skiaView_PaintSurface(object sender, SKPaintSurfaceEventArgs e) { // the the canvas and properties var canvas = e.Surface.Canvas; //绘图 DrawSkia(canvas); } private void DrawSkia(SKCanvas canvas) { // get the screen density for scaling var scale = 1f; // handle the device screen density canvas.Scale(scale); // make sure the canvas is blank canvas.Clear(GetSkColor(Color.LightGray)); DrawLines(canvas, _skFittingPointList, Color.Aqua); DrawPoints(canvas, _skOriginalPointList, Color.Red); DrawText(canvas, Color.Black); } //画曲线 private void DrawLines(SKCanvas canvas, IList<SKPoint> points, Color color) { if (points.Count == 0) { return; } using (var paint = new SKPaint()) { paint.Style = SKPaintStyle.Stroke; paint.StrokeWidth = 3; paint.IsAntialias = true; //抗锯齿 paint.StrokeCap = SKStrokeCap.Round; paint.Color = GetSkColor(color); using (var path = new SKPath()) { path.MoveTo(points[0]); for (var i = 1; i < points.Count; i++) { path.LineTo(points[i]); } canvas.DrawPath(path, paint); } } } //画点 private void DrawPoints(SKCanvas canvas, List<SKPoint> pointList, Color color) { using (var paint = new SKPaint()) { paint.Style = SKPaintStyle.Stroke; paint.StrokeWidth = 8; paint.IsAntialias = true; //抗锯齿 paint.StrokeCap = SKStrokeCap.Round; paint.Color = GetSkColor(color); pointList.ForEach(t => canvas.DrawPoint(t, paint)); } } //文本 private void DrawText(SKCanvas canvas, Color color) { // draw some text var paint = new SKPaint { Color = GetSkColor(color), IsAntialias = true, Style = SKPaintStyle.Fill, TextAlign = SKTextAlign.Left, TextSize = 16 }; var point = new SKPoint(5, paint.TextSize + 5); var text = $"{_order}阶曲线拟合:R^2 = {_rSquared}"; canvas.DrawText(text, point, paint); } private static SKColor GetSkColor(Color color) { return new SKColor(color.R, color.G, color.B); } } }标签:曲线拟合,Numerics,canvas,SkiaSharp,private,paint,var,new,order From: https://www.cnblogs.com/xhubobo/p/17188087.html