稳健的曲线拟合¶
现在假设我们得到的数据有一些异常值,即我们有一些不服从噪声模型的点。如果我们使用上面的代码来拟合这些数据,我们将得到如下所示的拟合。注意拟合曲线如何偏离基本事实。
要处理异常值,标准技术是使用 LossFunction
. 损失函数减少了具有高残差的残差块的影响,通常是那些对应于异常值的块。
为了将损失函数与残差块相关联,我们更改
problem.AddResidualBlock(cost_function, nullptr , &m, &c);
到
problem.AddResidualBlock(cost_function, new CauchyLoss(0.5) , &m, &c);
// Data generated using the following octave code. // randn('seed', 23497); // m = 0.3; // c = 0.1; // x=[0:0.075:5]; // y = exp(m * x + c); // noise = randn(size(x)) * 0.2; // outlier_noise = rand(size(x)) < 0.05; // y_observed = y + noise + outlier_noise; // data = [x', y_observed']; const int kNumObservations = 67; // clang-format off const double data[] = { 0.000000e+00, 1.133898e+00, 7.500000e-02, 1.334902e+00, 1.500000e-01, 1.213546e+00, 2.250000e-01, 1.252016e+00, 3.000000e-01, 1.392265e+00, 3.750000e-01, 1.314458e+00, 4.500000e-01, 1.472541e+00, 5.250000e-01, 1.536218e+00, 6.000000e-01, 1.355679e+00, 6.750000e-01, 1.463566e+00, 7.500000e-01, 1.490201e+00, 8.250000e-01, 1.658699e+00, 9.000000e-01, 1.067574e+00, 9.750000e-01, 1.464629e+00, 1.050000e+00, 1.402653e+00, 1.125000e+00, 1.713141e+00, 1.200000e+00, 1.527021e+00, 1.275000e+00, 1.702632e+00, 1.350000e+00, 1.423899e+00, 1.425000e+00, 5.543078e+00, // Outlier point 1.500000e+00, 5.664015e+00, // Outlier point 1.575000e+00, 1.732484e+00, 1.650000e+00, 1.543296e+00, 1.725000e+00, 1.959523e+00, 1.800000e+00, 1.685132e+00, 1.875000e+00, 1.951791e+00, 1.950000e+00, 2.095346e+00, 2.025000e+00, 2.361460e+00, 2.100000e+00, 2.169119e+00, 2.175000e+00, 2.061745e+00, 2.250000e+00, 2.178641e+00, 2.325000e+00, 2.104346e+00, 2.400000e+00, 2.584470e+00, 2.475000e+00, 1.914158e+00, 2.550000e+00, 2.368375e+00, 2.625000e+00, 2.686125e+00, 2.700000e+00, 2.712395e+00, 2.775000e+00, 2.499511e+00, 2.850000e+00, 2.558897e+00, 2.925000e+00, 2.309154e+00, 3.000000e+00, 2.869503e+00, 3.075000e+00, 3.116645e+00, 3.150000e+00, 3.094907e+00, 3.225000e+00, 2.471759e+00, 3.300000e+00, 3.017131e+00, 3.375000e+00, 3.232381e+00, 3.450000e+00, 2.944596e+00, 3.525000e+00, 3.385343e+00, 3.600000e+00, 3.199826e+00, 3.675000e+00, 3.423039e+00, 3.750000e+00, 3.621552e+00, 3.825000e+00, 3.559255e+00, 3.900000e+00, 3.530713e+00, 3.975000e+00, 3.561766e+00, 4.050000e+00, 3.544574e+00, 4.125000e+00, 3.867945e+00, 4.200000e+00, 4.049776e+00, 4.275000e+00, 3.885601e+00, 4.350000e+00, 4.110505e+00, 4.425000e+00, 4.345320e+00, 4.500000e+00, 4.161241e+00, 4.575000e+00, 4.363407e+00, 4.650000e+00, 4.161576e+00, 4.725000e+00, 4.619728e+00, 4.800000e+00, 4.737410e+00, 4.875000e+00, 4.727863e+00, 4.950000e+00, 4.669206e+00 }; // clang-format on using ceres::AutoDiffCostFunction; using ceres::CauchyLoss; using ceres::CostFunction; using ceres::Problem; using ceres::Solve; using ceres::Solver; struct ExponentialResidual { ExponentialResidual(double x, double y) : x_(x), y_(y) {} template <typename T> bool operator()(const T* const m, const T* const c, T* residual) const { residual[0] = y_ - exp(m[0] * x_ + c[0]); return true; } private: const double x_; const double y_; }; int main(int argc, char** argv) { google::InitGoogleLogging(argv[0]); double m = 0.0; double c = 0.0; Problem problem; for (int i = 0; i < kNumObservations; ++i) {// 循环遍历所有观测数据 x y 67组 //自动导数(AutoDiffCostFunction):由ceres自行决定导数的计算方式,最常用的求导方式。 //ExponentialResidual, 1, 1, 1 //模板参数依次为仿函数(functor)类型CostFunctor,残差维数residualDim 1 参数维数paramDim 参数m 1维 参数c 1维 接受参数类型为仿函数指针CostFunctor*。 CostFunction* cost_function = new AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>( //所有的观测数据 逐条加入yi=data[2 * i], xi=data[2 * i + 1] new ExponentialResidual(data[2 * i], data[2 * i + 1])); /* 标准技术是使用 LossFunction 损失函数减少了具有高残差的残差块的影响,通常是那些对应于异常值的块 problem.AddResidualBlock(cost_function, nullptr , &m, &c); 改为 problem.AddResidualBlock(cost_function, new CauchyLoss(0.5) , &m, &c); */ problem.AddResidualBlock(cost_function, new CauchyLoss(0.5), &m, &c); } Solver::Options options; options.linear_solver_type = ceres::DENSE_QR; options.minimizer_progress_to_stdout = true; Solver::Summary summary; Solve(options, &problem, &summary); std::cout << summary.BriefReport() << "\n"; std::cout << "Initial m: " << 0.0 << " c: " << 0.0 << "\n"; std::cout << "Final m: " << m << " c: " << c << "\n"; return 0; } Powered by Gitiles| Privacy
标签:曲线拟合,00,01,const,0.1,cereas,ceres,double,using From: https://www.cnblogs.com/gooutlook/p/17020940.html