首页 > 其他分享 >120. Triangle

120. Triangle

时间:2023-03-07 13:02:48浏览次数:38  
标签:layer 底向上 triangle int minpath 120 自顶向下 Triangle


题目

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[ [2], [3,4], [6,5,7], [4,1,8,3] ]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.


思路

本题一开始看到三角形结构,我想到了树,从树我又想到了递归,因此想用深度优先遍历,但是仔细观察这个三角形结构,又会发现和最小路径本质上是共享一个分支的,因此这个问题可以分解成子三角形最小和来求解。所以动态规划的思想就呼之欲出了。但是动态规划是自顶向下还是自底向上呢?因为题目有限制条件:得分点是仅使用O(n)的额外空间,如果使用自顶向下就会产生O(n*n)的额外空间,因此我们采用自底向上。那么动态规划状态转移方程为:

minpath[k][i] = min( minpath[k+1][i], minpath[k+1][i+1]) + triangle[k][i];

可以简化为:

For the kth level:
minpath[i] = min( minpath[i], minpath[i+1]) + triangle[k][i];


代码
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
    int n = triangle.size();
    vector<int> minlen(triangle.back());
    for (int layer = n-2; layer >= 0; layer--) // For each layer
    {
        for (int i = 0; i <= layer; i++) // Check its every 'node'
        {
            // Find the lesser of its two children, and sum the current value in the triangle with it.
            minlen[i] = min(minlen[i], minlen[i+1]) + triangle[layer][i]; 
        }
    }
    return minlen[0];
}
};

标签:layer,底向上,triangle,int,minpath,120,自顶向下,Triangle
From: https://blog.51cto.com/u_15996214/6105923

相关文章