lucas定理求大组合数取模板子
#include<bits/stdc++.h> #define fi first #define se second #define io std::ios::sync_with_stdio(false) using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<int,int> pii; const ll mod=998244353,INF = 0x3f3f3f3f; ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} ll exgcd(ll a, ll b, ll &x, ll &y) {if(!b) {x = 1; y = 0; return a;}ll r = exgcd(b, a % b, x, y);ll tmp = x; x = y, y = tmp - a / b * y;return r;} ll qpow(ll a,ll n){ll r=1;for (; n; a=a*a,n>>=1)if(n&1)r=r*a;return r;} ll qpow(ll a,ll n,ll P){ll r=1%P;for (a%=P; n; a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} inline int read(){int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}return x*f;} string getbinarystring(ll x){if(x==0) return string("0");string res;while(x){if(x&1) {res.push_back('1');}else {res.push_back('0');}x>>=1;}reverse(res.begin(),res.end());return res;} const int maxn=3e5+10; ll C(ll n,ll m,ll p,vector<ll> &a){ if(m>n)return 0; return ((a[n]*qpow(a[m],p-2,p))%p*qpow(a[n-m],p-2,p)%p); } ll Lucas(ll n, ll m,ll p,vector<ll> &a) { if (m == 0) return 1; return (C(n % p, m % p,p,a) * Lucas(n / p, m / p,p,a)) % p; } ll Lucas_solve(ll n,ll m,ll p) //模数必须为质数,否则用扩展lucas { vector<ll> a; a.resize(n+1); //存阶乘 a[0]=1; for(int i=1;i<=n;i++)a[i]=(a[i-1]*i)%p; return Lucas(n,m,p,a); } int main() { int n; cin>>n; n=n/3; ll w=Lucas_solve(n,n/2,mod); ll ans=1; for(int i=1;i<=n;i++) { int x,y,z; cin>>x>>y>>z; if(x==y&&x==z) ans*=3; else if(x==y&&z>y) ans*=2; else if(x==z&&y>z) ans*=2; else if(z==y&&x>z) ans*=2; ans%=mod; } cout<<ans*w%mod<<endl; }
标签:Educational,ch,return,int,ll,Rated,&&,ans,Triangle From: https://www.cnblogs.com/acmLLF/p/17144512.html