DetectGPT的目的是确定一段文本是否由特定的llm生成,例如GPT-3。为了对段落 x 进行分类,DetectGPT 首先使用通用的预训练模型(例如 T5)对段落 xi 生成较小的扰动。然后DetectGPT将原始样本x的对数概率与每个扰动样本xi进行比较。如果平均对数比高,则样本可能来自源模型。
ChatGPT是一个热门话题。人们正在讨论是否可以检测到一篇文章是由大型语言模型(LLM)生成的。DetectGPT定义了一种新的基于曲率的准则,用于判断是否从给定的LLM生成。DetectGPT不需要训练单独的分类器,不需要收集真实或生成的段落的数据集,也不需要显式地为生成的文本加水印。它只使用由感兴趣的模型计算的对数概率和来自另一个通用预训练语言模型(例如T5)的文章随机扰动。
完整文章:
https://avoid.overfit.cn/post/32ade57f49d14bbca4899fcc1a672146
标签:DetectGPT,模型,样本,生成,曲率,文本 From: https://www.cnblogs.com/deephub/p/17182881.html