首页 > 其他分享 >关于Stream-流的基本操作

关于Stream-流的基本操作

时间:2023-02-27 16:02:52浏览次数:55  
标签:stream Stream personList System Person add 关于 new 基本操作

concat:合并两个流
distinct:去重
limit:限制从流中获得前n个数据
skip:跳过前n个数据
iterate(1, x -> x + 2):无限流,一个起始值和一个生成下一个值的函数
sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).reversed()排序


public static void main(String[] args) { StreamTest test = new StreamTest(); test.streamTest19(); } /** * 提取/组合 * 流也可以进行合并、去重、限制、跳过等操作。 */ public void streamTest19() { String[] arr1 = { "a", "b", "c", "d" }; String[] arr2 = { "d", "e", "f", "g" }; Stream<String> stream1 = Stream.of(arr1); Stream<String> stream2 = Stream.of(arr2); // concat:合并两个流 distinct:去重 List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList()); // limit:限制从流中获得前n个数据 List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList()); // skip:跳过前n个数据 List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList()); System.out.println("流合并:" + newList); System.out.println("limit:" + collect); System.out.println("skip:" + collect2); } /** * 排序(sorted) * 将员工按工资由高到低(工资一样则按年龄由大到小)排序 */ public void streamTest18() { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Sherry", 9000, 24, "female", "New York")); personList.add(new Person("Tom", 8900, 22, "male", "Washington")); personList.add(new Person("Jack", 9100, 25, "male", "Washington")); personList.add(new Person("Lily", 8800, 26, "male", "New York")); personList.add(new Person("Alisa", 9100, 26, "female", "New York")); // 按工资升序排序(自然排序) List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName) .collect(Collectors.toList()); // 按工资倒序排序 List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed()) .map(Person::getName).collect(Collectors.toList()); // 先按工资再按年龄升序排序 List<String> newList3 = personList.stream() .sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName) .collect(Collectors.toList()); // 先按工资再按年龄自定义排序(降序) List<String> newList4 = personList.stream().sorted((p1, p2) -> { if (p1.getSalary() == p2.getSalary()) { return p2.getAge() - p1.getAge(); } else { return p2.getSalary() - p1.getSalary(); } }).map(Person::getName).collect(Collectors.toList()); System.out.println("按工资升序排序:" + newList); System.out.println("按工资降序排序:" + newList2); System.out.println("先按工资再按年龄升序排序:" + newList3); System.out.println("先按工资再按年龄自定义降序排序:" + newList4); } /** * 归约(reducing) * Collectors类提供的reducing方法,相比于stream本身的reduce方法,增加了对自定义归约的支持。 */ public void streamTest17() { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); // 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子) Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000))); System.out.println("员工扣税薪资总和:" + sum); // stream的reduce Optional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum); System.out.println("员工薪资总和:" + sum2.get()); } /** * 接合(joining) * joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。 */ public void streamTest16() { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(",")); System.out.println("所有员工的姓名:" + names); List<String> list = Arrays.asList("A", "B", "C"); String string = list.stream().collect(Collectors.joining("-")); System.out.println("拼接后的字符串:" + string); } /** * 分组(partitioningBy/groupingBy) * 将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组 */ public void streamTest15() { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, "male", "New York")); personList.add(new Person("Jack", 7000, "male", "Washington")); personList.add(new Person("Lily", 7800, "female", "Washington")); personList.add(new Person("Anni", 8200, "female", "New York")); personList.add(new Person("Owen", 9500, "male", "New York")); personList.add(new Person("Alisa", 7900, "female", "New York")); // 将员工按薪资是否高于8000分组 Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000)); // 将员工按性别分组 Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex)); // 将员工先按性别分组,再按地区分组 Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea))); System.out.println("员工按薪资是否大于8000分组情况:" + part); System.out.println("员工按性别分组情况:" + group); System.out.println("员工按性别、地区:" + group2); } /** * 统计(count/averaging) * 统计员工人数、平均工资、工资总额、最高工资。 */ public void streamTest14() { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); // 求总数 Long count = personList.stream().collect(Collectors.counting()); // 求平均工资 Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary)); // 求最高工资 Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare)); // 求工资之和 Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary)); // 一次性统计所有信息 DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary)); System.out.println("员工总数:" + count); System.out.println("员工平均工资:" + average); System.out.println("员工最高工资:" + max); System.out.println("员工工资总和:" + sum); System.out.println("员工工资所有统计:" + collect); } /** * 归集(toList/toSet/toMap) * 求所有员工的工资之和和最高工资。 */ public void streamTest13() { List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20); List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList()); Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet()); List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000) .collect(Collectors.toMap(Person::getName, p -> p)); System.out.println("toList:" + listNew); System.out.println("toSet:" + set); System.out.println("toMap:" + map); } /** * 归约(reduce) * 求所有员工的工资之和和最高工资。 */ public void streamTest12() { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); personList.add(new Person("Owen", 9500, 25, "male", "New York")); personList.add(new Person("Alisa", 7900, 26, "female", "New York")); // 求工资之和方式1: Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum); // 求工资之和方式2: Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), (sum1, sum2) -> sum1 + sum2); // 求工资之和方式3: Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum); // 求最高工资方式1: Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(), Integer::max); // 求最高工资方式2: Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(), (max1, max2) -> max1 > max2 ? max1 : max2); System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3); System.out.println("最高工资:" + maxSalary + "," + maxSalary2); } /** * 归约(reduce) * 求Integer集合的元素之和、乘积和最大值。 */ public void streamTest11() { List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4); // 求和方式1 Optional<Integer> sum = list.stream().reduce((x, y) -> x + y); // 求和方式2 Optional<Integer> sum2 = list.stream().reduce(Integer::sum); // 求和方式3 Integer sum3 = list.stream().reduce(0, Integer::sum); // 求乘积 Optional<Integer> product = list.stream().reduce((x, y) -> x * y); // 求最大值方式1 Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y); // 求最大值写法2 Integer max2 = list.stream().reduce(1, Integer::max); System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3); System.out.println("list求积:" + product.get()); System.out.println("list求和:" + max.get() + "," + max2); } /** * 映射(map/flatMap) * 将两个字符数组合并成一个新的字符数组。 */ public void streamTest10() { List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7"); List<String> listNew = list.stream().flatMap(s -> { // 将每个元素转换成一个stream String[] split = s.split(","); Stream<String> s2 = Arrays.stream(split); return s2; }).collect(Collectors.toList()); System.out.println("处理前的集合:" + list); System.out.println("处理后的集合:" + listNew); } /** * 映射(map/flatMap) * 将员工的薪资全部增加10000。 */ public void streamTest9() { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); personList.add(new Person("Owen", 9500, 25, "male", "New York")); personList.add(new Person("Alisa", 7900, 26, "female", "New York")); // 改变原来员工集合的方式 List<Person> personListNew = personList.stream().map(person -> { Person personNew = new Person(person.getName(), 0, 0, null, null); personNew.setSalary(person.getSalary() + 10000); return personNew; }).collect(Collectors.toList()); System.out.println("一次改动前:" + JSON.toJSONString(personList)); System.out.println("一次改动后:" + JSON.toJSONString(personListNew)); // 不改变原来员工集合的方式 List<Person> personListNew2 = personList.stream().map(person -> { person.setSalary(person.getSalary() + 10000); return person; }).collect(Collectors.toList()); System.out.println("二次改动前:" + JSON.toJSONString(personList)); System.out.println("二次改动后:" + JSON.toJSONString(personListNew2)); } /** * 映射(map/flatMap) * 英文字符串数组的元素全部改为大写。整数数组每个元素+3。 */ public void streamTest8() { String[] strArr = {"abcd", "bcdd", "defde", "fTr"}; List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList()); List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11); List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList()); System.out.println("每个元素大写:" + strList); System.out.println("每个元素+3:" + intListNew); } /** * 聚合(max/min/count) * 计算Integer集合中大于6的元素的个数。 */ public void streamTest7() { List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9); long count = list.stream().filter(x -> x > 6).count(); System.out.println("list中大于6的元素个数:" + count); } /** * 聚合(max/min/count) * 获取员工工资最高的人。 */ public void streamTest6() { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); personList.add(new Person("Owen", 9500, 25, "male", "New York")); personList.add(new Person("Alisa", 7900, 26, "female", "New York")); Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary)); System.out.println("员工工资最大值:" + max.get().getSalary()); } /** * 聚合(max/min/count) * 获取Integer集合中的最大值。 */ public void streamTest5() { List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6); // 自然排序 Optional<Integer> max = list.stream().max(Integer::compareTo); // 自定义排序 Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() { @Override public int compare(Integer o1, Integer o2) { return o1.compareTo(o2); } }); System.out.println("自然排序的最大值:" + max.get()); System.out.println("自定义排序的最大值:" + max2.get()); } /** * 聚合(max/min/count) * 获取String集合中最长的元素。 */ public void streamTest4() { List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd"); Optional<String> max = list.stream().max(Comparator.comparing(String::length)); System.out.println("最长的字符串:" + max.get()); } /** * 筛选员工中工资高于8000的人,并形成新的集合。 形成新集合依赖collect(收集), */ public void streamTest3() { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); personList.add(new Person("Owen", 9500, 25, "male", "New York")); personList.add(new Person("Alisa", 7900, 26, "female", "New York")); List<String> fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName) .collect(Collectors.toList()); System.out.print("高于8000的员工姓名:" + fiterList); } /** * 筛选出Integer集合中大于7的元素,并打印出来 */ public static void streamTestFilter() { List<Integer> list = Arrays.asList(6, 7, 3, 8, 1, 2, 9); Stream<Integer> stream = list.stream(); stream.filter(x -> x > 7).forEach(System.out::println); } /** * 遍历/匹配(foreach/find/match) */ public static void streamTest2() { List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1); // 遍历输出符合条件的元素 list.stream().filter(x -> x > 6).forEach(System.out::println); // 匹配第一个 Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst(); // 匹配任意(适用于并行流) Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny(); // 是否包含符合特定条件的元素 boolean anyMatch = list.stream().anyMatch(x -> x > 8); System.out.println("匹配第一个值:" + findFirst.get()); System.out.println("匹配任意一个值:" + findAny.get()); System.out.println("是否存在大于8的值:" + anyMatch); } /** * Stream可以通过集合数组创建。 */ public static void stream1Test() { // 1、通过 java.util.Collection.stream() 方法用集合创建流 List<String> list1 = Arrays.asList("a", "b", "c"); // 创建一个顺序流 Stream<String> stream = list1.stream(); // 创建一个并行流 Stream<String> parallelStream = list1.parallelStream(); // 使用java.util.Arrays.stream(T[] array)方法用数组创建流 int[] array = {1, 3, 5, 6, 8}; IntStream stream0 = Arrays.stream(array); // 使用Stream的静态方法:of()、iterate()、generate() Stream<Integer> stream1 = Stream.of(1, 2, 3, 4, 5, 6); Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 3).limit(4); stream2.forEach(System.out::println); Stream<Double> stream3 = Stream.generate(Math::random).limit(3); stream3.forEach(System.out::println); } class Person { private String name; // 姓名 private int salary; // 薪资 private int age; // 年龄 private String sex; //性别 private String area; // 地区 // 构造方法 public Person(String name, int salary, int age, String sex, String area) { this.name = name; this.salary = salary; this.age = age; this.sex = sex; this.area = area; } // 构造方法 public Person(String name, int salary, String sex, String area) { this.name = name; this.salary = salary; this.sex = sex; this.area = area; } public String getName() { return name; } public void setName(String name) { this.name = name; } public int getSalary() { return salary; } public void setSalary(int salary) { this.salary = salary; } public int getAge() { return age; } public void setAge(int age) { this.age = age; } public String getSex() { return sex; } public void setSex(String sex) { this.sex = sex; } public String getArea() { return area; } public void setArea(String area) { this.area = area; } @Override public String toString() { final StringBuilder sb = new StringBuilder("{"); sb.append("\"name\":\"") .append(name).append('\"'); sb.append(",\"salary\":") .append(salary); sb.append(",\"age\":") .append(age); sb.append(",\"sex\":\"") .append(sex).append('\"'); sb.append(",\"area\":\"") .append(area).append('\"'); sb.append('}'); return sb.toString(); } }

  

标签:stream,Stream,personList,System,Person,add,关于,new,基本操作
From: https://www.cnblogs.com/origin-zy/p/17159988.html

相关文章

  • 商业楼房管理系统,关于公租房清退房源再次分配有关问题的通知
    城六区住宅保证中心和沣东新城、高新区、经开区、曲江新区、国际港务区、浐灞生态区、航天基地住宅保证主管部门:为提高公租房周转使用功率,削减轮候家庭等待时刻,现就公租房......
  • 推荐一个Dapper扩展CRUD基本操作的开源库
    推荐一个Dapper扩展CRUD基本操作的开源库 在C#众多ORM框架中,Dapper绝对称得上微型ORM之王,Dapper以灵活、性能好而著名,同样也是支持各种数据库,但是对于一些复杂的查询,......
  • 解析关于Tomcat Servlet-request的获取请求参数及几种常用方法
    摘要:本文主要讲解Tomcat之Servlet-request请求参数、Servlet转发机制、常用方法本文分享自华为云社区《​​浅谈Tomcat之Servlet-request获取请求参数及常用方法​​》,作者:Q......
  • 关于MQ消息队列的一些浅理解
    从别的博客看到的,说的明白一点就是生产者是商家,消息队列是驿站,消费者是用户商家(生产者)生产是,发货存到驿站(消息推到消息队列),用户(消费者)消费是,从驿站拿货(从消息队列拿消息)......
  • 关于百度地图 MapGL 视角移动函数 centerAndZoom 完成后触发事件
    //变化可视区域替代掉centerAndZoomchangeBounds(param:{center:number[],zoom:number,onAfter?:Function,isNoOnChange?:boolean}){letisMo......
  • 关于bug的分类和定金,终于有人讲明白了
    每天进步一点点,关注我们哦,每天分享测试技术文章本文章出自【码同学软件测试】码同学公众号:自动化软件测试,领取资料可加:magetest码同学抖音号:小码哥聊软件测试 01bug......
  • 2月25至2月26日——关于个人制作原创模型的尝试
      上述代码在我经过多方查询和对代码和报错的仔细观察后,发现我之前安装Python的方式一直有问题,导致后面AI所用的虚拟环境对应的Python版本一直不对。但重新安装真的是......
  • 关于vs code的卸载
    今天为了配置git把vsc的环境搞得有些乱七八糟,于是想着重装一下,可是卸载后重新安装还是之前那样,无奈上网查资料,发现除了安装目录之外,还要删除两个文件夹:C:\Users\admin\.vsc......
  • 关于tomcat9..0版主乱码
    没有用idea开发工具,下了个tomcat9的版主,在webapps里面新建了一个项目。启动tomcat时,控制台乱码(这个习惯了)但是项目里写了一个html文件既然也乱码了,tomcat启动日志乱码的问......
  • Docker基本操作
    #打包镜像dockerbuild[-ttag名称].dockerbuild-tv1.15.100.#更改tagdockertag元tag目标tagdockertagbd754a5c2630192.168.**.**/bigdata/eclipse-t......