首页 > 其他分享 >spark-3.3.2-bin-hadoop3-scala2.13 Local模式

spark-3.3.2-bin-hadoop3-scala2.13 Local模式

时间:2023-02-21 00:11:25浏览次数:47  
标签:bin 02 20 22 23 INFO scala2.13 3.3 06

目标

  搭建单机开发环境,执行pyspark程序

  安装 Anaconda3-2022.10-Linux-x86_64.sh

  安装 pycharm-community-2022.3.2.tar.gz

 

环境

  OS:Ubuntu22

基础包安装

####################################################################################################
##  root
####################################################################################################


# 有的可能没用,先装上
# https://github.com/apache/hadoop/blob/rel/release-3.2.1/dev-support/docker/Dockerfile


apt-get install -y apt-utils                    ;
apt-get install -y build-essential              ;
apt-get install -y bzip2                        ;
apt-get install -y clang                        ;
apt-get install -y curl                         ;
apt-get install -y doxygen                      ;
apt-get install -y fuse                         ;
apt-get install -y g++                          ;
apt-get install -y gcc                          ;
apt-get install -y git                          ;
apt-get install -y gnupg-agent                  ;
apt-get install -y libbz2-dev                   ;
apt-get install -y libcurl4-openssl-dev         ;
apt-get install -y libfuse-dev                  ;
apt-get install -y libprotobuf-dev              ;
apt-get install -y libprotoc-dev                ;
apt-get install -y libsasl2-dev                 ;
apt-get install -y libsnappy-dev                ;
apt-get install -y libssl-dev                   ;
apt-get install -y libtool                      ;
apt-get install -y libzstd1-dev                 ;
apt-get install -y locales                      ;
apt-get install -y make                         ;
apt-get install -y pinentry-curses              ;
apt-get install -y pkg-config                   ;
apt-get install -y python3                      ;
apt-get install -y python3-pip                  ;
apt-get install -y python3-pkg-resources        ;
apt-get install -y python3-setuptools           ;
apt-get install -y python3-wheel                ;
apt-get install -y rsync                        ;
apt-get install -y snappy                       ;
apt-get install -y sudo                         ;
apt-get install -y valgrind                     ;
apt-get install -y zlib1g-dev                   ;


ln -s /usr/bin/python3 /usr/bin/python



# 安装OPEN JDK
root@apollo-virtualbox:~# java -version
openjdk version "1.8.0_352"
OpenJDK Runtime Environment (build 1.8.0_352-8u352-ga-1~22.04-b08)
OpenJDK 64-Bit Server VM (build 25.352-b08, mixed mode)
root@apollo-virtualbox:~#


 

 


root@apollo-virtualbox:~# ll /opt/bigdata/
total 16
drwxr-xr-x  4 hadoop hadoop 4096 2023-02-20 21:32 .
drwxr-xr-x  4 root   root   4096 2023-02-20 21:16 ..
drwxr-xr-x  3 hadoop hadoop 4096 2023-02-20 21:32 backup
drwxr-xr-x 14 hadoop hadoop 4096 2023-02-20 21:48 spark-3.3.2-bin-hadoop3-scala2.13
root@apollo-virtualbox:~#

####################################################################################################
##  hadoop
####################################################################################################

cd
ssh-keygen -t rsa

hadoop@apollo-virtualbox:~$ find .ssh
.ssh
.ssh/id_rsa.pub
.ssh/id_rsa
.ssh/known_hosts
hadoop@apollo-virtualbox:~$

把产生的公钥文件放置到authorized_keys文件中
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys



# edit .bashrc
alias ll='ls -al -v --group-directories-first --color=auto  --time-style=long-iso'
export SPARK_HOME=/opt/bigdata/spark-3.3.2-bin-hadoop3-scala2.13
export PATH=$SPARK_HOME/bin:$PATH


$ source .bashrc


hadoop@apollo-virtualbox:/opt/bigdata/spark-3.3.2-bin-hadoop3-scala2.13$ ./sbin/start-master.sh
starting org.apache.spark.deploy.master.Master, logging to /opt/bigdata/spark-3.3.2-bin-hadoop3-scala2.13/logs/spark-hadoop-org.apache.spark.deploy.master.Master-1-apollo-virtualbox.out
hadoop@apollo-virtualbox:/opt/bigdata/spark-3.3.2-bin-hadoop3-scala2.13$


 

http://192.168.56.100:8080/

 

 

测试

hadoop@apollo-virtualbox:/opt/bigdata/spark-3.3.2-bin-hadoop3-scala2.13$ ./bin/run-example SparkPi 10
23/02/20 22:06:21 WARN Utils: Your hostname, apollo-virtualbox resolves to a loopback address: 127.0.1.1; using 10.0.2.15 instead (on interface enp0s3)
23/02/20 22:06:21 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
23/02/20 22:06:21 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
23/02/20 22:06:21 INFO SparkContext: Running Spark version 3.3.2
23/02/20 22:06:21 INFO ResourceUtils: ==============================================================
23/02/20 22:06:21 INFO ResourceUtils: No custom resources configured for spark.driver.
23/02/20 22:06:21 INFO ResourceUtils: ==============================================================
23/02/20 22:06:21 INFO SparkContext: Submitted application: Spark Pi
23/02/20 22:06:21 INFO ResourceProfile: Default ResourceProfile created, executor resources: Map(cores -> name: cores, amount: 1, script: , vendor: , memory -> name: memory, amount: 1024, script: , vendor: , offHeap -> name: offHeap, amount: 0, script: , vendor: ), task resources: Map(cpus -> name: cpus, amount: 1.0)
23/02/20 22:06:21 INFO ResourceProfile: Limiting resource is cpu
23/02/20 22:06:21 INFO ResourceProfileManager: Added ResourceProfile id: 0
23/02/20 22:06:21 INFO SecurityManager: Changing view acls to: hadoop
23/02/20 22:06:21 INFO SecurityManager: Changing modify acls to: hadoop
23/02/20 22:06:21 INFO SecurityManager: Changing view acls groups to:
23/02/20 22:06:21 INFO SecurityManager: Changing modify acls groups to:
23/02/20 22:06:21 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users  with view permissions: Set(hadoop); groups with view permissions: Set(); users  with modify permissions: Set(hadoop); groups with modify permissions: Set()
23/02/20 22:06:21 INFO Utils: Successfully started service 'sparkDriver' on port 36917.
23/02/20 22:06:21 INFO SparkEnv: Registering MapOutputTracker
23/02/20 22:06:22 INFO SparkEnv: Registering BlockManagerMaster
23/02/20 22:06:22 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
23/02/20 22:06:22 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
23/02/20 22:06:22 INFO SparkEnv: Registering BlockManagerMasterHeartbeat
23/02/20 22:06:22 INFO DiskBlockManager: Created local directory at /tmp/blockmgr-7e2bbdbb-30e4-40ff-8c1d-30a1ee12e1e6
23/02/20 22:06:22 INFO MemoryStore: MemoryStore started with capacity 366.3 MiB
23/02/20 22:06:22 INFO SparkEnv: Registering OutputCommitCoordinator
23/02/20 22:06:22 INFO Utils: Successfully started service 'SparkUI' on port 4040.
23/02/20 22:06:22 INFO SparkContext: Added JAR file:///opt/bigdata/spark-3.3.2-bin-hadoop3-scala2.13/examples/jars/scopt_2.13-3.7.1.jar at spark://10.0.2.15:36917/jars/scopt_2.13-3.7.1.jar with timestamp 1676901981632
23/02/20 22:06:22 INFO SparkContext: Added JAR file:///opt/bigdata/spark-3.3.2-bin-hadoop3-scala2.13/examples/jars/spark-examples_2.13-3.3.2.jar at spark://10.0.2.15:36917/jars/spark-examples_2.13-3.3.2.jar with timestamp 1676901981632
23/02/20 22:06:22 INFO SparkContext: The JAR file:/opt/bigdata/spark-3.3.2-bin-hadoop3-scala2.13/examples/jars/spark-examples_2.13-3.3.2.jar at spark://10.0.2.15:36917/jars/spark-examples_2.13-3.3.2.jar has been added already. Overwriting of added jar is not supported in the current version.
23/02/20 22:06:22 INFO Executor: Starting executor ID driver on host 10.0.2.15
23/02/20 22:06:22 INFO Executor: Starting executor with user classpath (userClassPathFirst = false): ''
23/02/20 22:06:22 INFO Executor: Fetching spark://10.0.2.15:36917/jars/scopt_2.13-3.7.1.jar with timestamp 1676901981632
23/02/20 22:06:22 INFO TransportClientFactory: Successfully created connection to /10.0.2.15:36917 after 21 ms (0 ms spent in bootstraps)
23/02/20 22:06:22 INFO Utils: Fetching spark://10.0.2.15:36917/jars/scopt_2.13-3.7.1.jar to /tmp/spark-3c59b0eb-bbc2-4c51-b5b2-235b4bceab08/userFiles-ed7b0492-12db-463d-852d-7c7f4943c304/fetchFileTemp5538590310162219393.tmp
23/02/20 22:06:22 INFO Executor: Adding file:/tmp/spark-3c59b0eb-bbc2-4c51-b5b2-235b4bceab08/userFiles-ed7b0492-12db-463d-852d-7c7f4943c304/scopt_2.13-3.7.1.jar to class loader
23/02/20 22:06:22 INFO Executor: Fetching spark://10.0.2.15:36917/jars/spark-examples_2.13-3.3.2.jar with timestamp 1676901981632
23/02/20 22:06:22 INFO Utils: Fetching spark://10.0.2.15:36917/jars/spark-examples_2.13-3.3.2.jar to /tmp/spark-3c59b0eb-bbc2-4c51-b5b2-235b4bceab08/userFiles-ed7b0492-12db-463d-852d-7c7f4943c304/fetchFileTemp7949452791611007828.tmp
23/02/20 22:06:22 INFO Executor: Adding file:/tmp/spark-3c59b0eb-bbc2-4c51-b5b2-235b4bceab08/userFiles-ed7b0492-12db-463d-852d-7c7f4943c304/spark-examples_2.13-3.3.2.jar to class loader
23/02/20 22:06:22 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 35815.
23/02/20 22:06:22 INFO NettyBlockTransferService: Server created on 10.0.2.15:35815
23/02/20 22:06:22 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
23/02/20 22:06:22 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, 10.0.2.15, 35815, None)
23/02/20 22:06:22 INFO BlockManagerMasterEndpoint: Registering block manager 10.0.2.15:35815 with 366.3 MiB RAM, BlockManagerId(driver, 10.0.2.15, 35815, None)
23/02/20 22:06:22 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 10.0.2.15, 35815, None)
23/02/20 22:06:22 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, 10.0.2.15, 35815, None)
23/02/20 22:06:23 INFO SparkContext: Starting job: reduce at SparkPi.scala:38
23/02/20 22:06:23 INFO DAGScheduler: Got job 0 (reduce at SparkPi.scala:38) with 10 output partitions
23/02/20 22:06:23 INFO DAGScheduler: Final stage: ResultStage 0 (reduce at SparkPi.scala:38)
23/02/20 22:06:23 INFO DAGScheduler: Parents of final stage: List()
23/02/20 22:06:23 INFO DAGScheduler: Missing parents: List()
23/02/20 22:06:23 INFO DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:34), which has no missing parents
23/02/20 22:06:23 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 4.0 KiB, free 366.3 MiB)
23/02/20 22:06:23 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 2.2 KiB, free 366.3 MiB)
23/02/20 22:06:23 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 10.0.2.15:35815 (size: 2.2 KiB, free: 366.3 MiB)
23/02/20 22:06:23 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1513
23/02/20 22:06:23 INFO DAGScheduler: Submitting 10 missing tasks from ResultStage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:34) (first 15 tasks are for partitions Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))
23/02/20 22:06:23 INFO TaskSchedulerImpl: Adding task set 0.0 with 10 tasks resource profile 0
23/02/20 22:06:23 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0) (10.0.2.15, executor driver, partition 0, PROCESS_LOCAL, 7534 bytes) taskResourceAssignments Map()
23/02/20 22:06:23 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1) (10.0.2.15, executor driver, partition 1, PROCESS_LOCAL, 7534 bytes) taskResourceAssignments Map()
23/02/20 22:06:23 INFO Executor: Running task 0.0 in stage 0.0 (TID 0)
23/02/20 22:06:23 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)
23/02/20 22:06:23 INFO Executor: Finished task 1.0 in stage 0.0 (TID 1). 1097 bytes result sent to driver
23/02/20 22:06:23 INFO Executor: Finished task 0.0 in stage 0.0 (TID 0). 1097 bytes result sent to driver
23/02/20 22:06:23 INFO TaskSetManager: Starting task 2.0 in stage 0.0 (TID 2) (10.0.2.15, executor driver, partition 2, PROCESS_LOCAL, 7534 bytes) taskResourceAssignments Map()
23/02/20 22:06:23 INFO Executor: Running task 2.0 in stage 0.0 (TID 2)
23/02/20 22:06:23 INFO TaskSetManager: Starting task 3.0 in stage 0.0 (TID 3) (10.0.2.15, executor driver, partition 3, PROCESS_LOCAL, 7534 bytes) taskResourceAssignments Map()
23/02/20 22:06:23 INFO Executor: Running task 3.0 in stage 0.0 (TID 3)
23/02/20 22:06:23 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 401 ms on 10.0.2.15 (executor driver) (1/10)
23/02/20 22:06:23 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 406 ms on 10.0.2.15 (executor driver) (2/10)
23/02/20 22:06:23 INFO Executor: Finished task 2.0 in stage 0.0 (TID 2). 1054 bytes result sent to driver
23/02/20 22:06:23 INFO Executor: Finished task 3.0 in stage 0.0 (TID 3). 1054 bytes result sent to driver
23/02/20 22:06:23 INFO TaskSetManager: Starting task 4.0 in stage 0.0 (TID 4) (10.0.2.15, executor driver, partition 4, PROCESS_LOCAL, 7534 bytes) taskResourceAssignments Map()
23/02/20 22:06:23 INFO Executor: Running task 4.0 in stage 0.0 (TID 4)
23/02/20 22:06:23 INFO TaskSetManager: Starting task 5.0 in stage 0.0 (TID 5) (10.0.2.15, executor driver, partition 5, PROCESS_LOCAL, 7534 bytes) taskResourceAssignments Map()
23/02/20 22:06:23 INFO Executor: Running task 5.0 in stage 0.0 (TID 5)
23/02/20 22:06:23 INFO TaskSetManager: Finished task 2.0 in stage 0.0 (TID 2) in 70 ms on 10.0.2.15 (executor driver) (3/10)
23/02/20 22:06:23 INFO TaskSetManager: Finished task 3.0 in stage 0.0 (TID 3) in 68 ms on 10.0.2.15 (executor driver) (4/10)
23/02/20 22:06:23 INFO Executor: Finished task 4.0 in stage 0.0 (TID 4). 1054 bytes result sent to driver
23/02/20 22:06:23 INFO TaskSetManager: Starting task 6.0 in stage 0.0 (TID 6) (10.0.2.15, executor driver, partition 6, PROCESS_LOCAL, 7534 bytes) taskResourceAssignments Map()
23/02/20 22:06:23 INFO TaskSetManager: Finished task 4.0 in stage 0.0 (TID 4) in 32 ms on 10.0.2.15 (executor driver) (5/10)
23/02/20 22:06:23 INFO Executor: Finished task 5.0 in stage 0.0 (TID 5). 1054 bytes result sent to driver
23/02/20 22:06:23 INFO TaskSetManager: Starting task 7.0 in stage 0.0 (TID 7) (10.0.2.15, executor driver, partition 7, PROCESS_LOCAL, 7534 bytes) taskResourceAssignments Map()
23/02/20 22:06:23 INFO TaskSetManager: Finished task 5.0 in stage 0.0 (TID 5) in 25 ms on 10.0.2.15 (executor driver) (6/10)
23/02/20 22:06:23 INFO Executor: Running task 6.0 in stage 0.0 (TID 6)
23/02/20 22:06:23 INFO Executor: Running task 7.0 in stage 0.0 (TID 7)
23/02/20 22:06:23 INFO Executor: Finished task 6.0 in stage 0.0 (TID 6). 1054 bytes result sent to driver
23/02/20 22:06:23 INFO TaskSetManager: Starting task 8.0 in stage 0.0 (TID 8) (10.0.2.15, executor driver, partition 8, PROCESS_LOCAL, 7534 bytes) taskResourceAssignments Map()
23/02/20 22:06:23 INFO Executor: Running task 8.0 in stage 0.0 (TID 8)
23/02/20 22:06:23 INFO TaskSetManager: Finished task 6.0 in stage 0.0 (TID 6) in 26 ms on 10.0.2.15 (executor driver) (7/10)
23/02/20 22:06:23 INFO Executor: Finished task 8.0 in stage 0.0 (TID 8). 1054 bytes result sent to driver
23/02/20 22:06:23 INFO TaskSetManager: Starting task 9.0 in stage 0.0 (TID 9) (10.0.2.15, executor driver, partition 9, PROCESS_LOCAL, 7534 bytes) taskResourceAssignments Map()
23/02/20 22:06:23 INFO TaskSetManager: Finished task 8.0 in stage 0.0 (TID 8) in 16 ms on 10.0.2.15 (executor driver) (8/10)
23/02/20 22:06:23 INFO Executor: Running task 9.0 in stage 0.0 (TID 9)
23/02/20 22:06:23 INFO Executor: Finished task 9.0 in stage 0.0 (TID 9). 1054 bytes result sent to driver
23/02/20 22:06:23 INFO TaskSetManager: Finished task 9.0 in stage 0.0 (TID 9) in 19 ms on 10.0.2.15 (executor driver) (9/10)
23/02/20 22:06:23 INFO Executor: Finished task 7.0 in stage 0.0 (TID 7). 1054 bytes result sent to driver
23/02/20 22:06:23 INFO TaskSetManager: Finished task 7.0 in stage 0.0 (TID 7) in 58 ms on 10.0.2.15 (executor driver) (10/10)
23/02/20 22:06:23 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
23/02/20 22:06:23 INFO DAGScheduler: ResultStage 0 (reduce at SparkPi.scala:38) finished in 0.677 s
23/02/20 22:06:23 INFO DAGScheduler: Job 0 is finished. Cancelling potential speculative or zombie tasks for this job
23/02/20 22:06:23 INFO TaskSchedulerImpl: Killing all running tasks in stage 0: Stage finished
23/02/20 22:06:23 INFO DAGScheduler: Job 0 finished: reduce at SparkPi.scala:38, took 0.746729 s
Pi is roughly 3.13993113993114
23/02/20 22:06:23 INFO SparkUI: Stopped Spark web UI at http://10.0.2.15:4040
23/02/20 22:06:23 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
23/02/20 22:06:23 INFO MemoryStore: MemoryStore cleared
23/02/20 22:06:23 INFO BlockManager: BlockManager stopped
23/02/20 22:06:23 INFO BlockManagerMaster: BlockManagerMaster stopped
23/02/20 22:06:23 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
23/02/20 22:06:23 INFO SparkContext: Successfully stopped SparkContext
23/02/20 22:06:23 INFO ShutdownHookManager: Shutdown hook called
23/02/20 22:06:23 INFO ShutdownHookManager: Deleting directory /tmp/spark-3c59b0eb-bbc2-4c51-b5b2-235b4bceab08
23/02/20 22:06:23 INFO ShutdownHookManager: Deleting directory /tmp/spark-b99bef20-2c34-4558-892d-a13ba2a38524
hadoop@apollo-virtualbox:/opt/bigdata/spark-3.3.2-bin-hadoop3-scala2.13$
hadoop@apollo-virtualbox:/opt/bigdata/spark-3.3.2-bin-hadoop3-scala2.13$

 

 

hadoop@apollo-virtualbox:/opt/bigdata/spark-3.3.2-bin-hadoop3-scala2.13$ ./bin/spark-shell
23/02/20 22:09:10 WARN Utils: Your hostname, apollo-virtualbox resolves to a loopback address: 127.0.1.1; using 10.0.2.15 instead (on interface enp0s3)
23/02/20 22:09:10 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 3.3.2
      /_/

Using Scala version 2.13.8 (OpenJDK 64-Bit Server VM, Java 1.8.0_352)
Type in expressions to have them evaluated.
Type :help for more information.
23/02/20 22:09:14 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Spark context Web UI available at http://10.0.2.15:4040
Spark context available as 'sc' (master = local[*], app id = local-1676902155804).
Spark session available as 'spark'.

scala>

 

 Install anaconda Anaconda3-2022.10-Linux-x86_64.sh

 

(base) hadoop@apollo-virtualbox:~$ which pyspark
/opt/bigdata/spark-3.3.2-bin-hadoop3-scala2.13/bin/pyspark
(base) hadoop@apollo-virtualbox:~$
(base) hadoop@apollo-virtualbox:~$ pyspark
Python 3.9.13 (main, Aug 25 2022, 23:26:10)
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
23/02/20 23:25:19 WARN Utils: Your hostname, apollo-virtualbox resolves to a loopback address: 127.0.1.1; using 10.0.2.15 instead (on interface enp0s3)
23/02/20 23:25:19 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
23/02/20 23:25:21 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 3.3.2
      /_/

Using Python version 3.9.13 (main, Aug 25 2022 23:26:10)
Spark context Web UI available at http://10.0.2.15:4040
Spark context available as 'sc' (master = local[*], app id = local-1676906723183).
SparkSession available as 'spark'.
>>>





(base) hadoop@apollo-virtualbox:~$
(base) hadoop@apollo-virtualbox:~$ cd
(base) hadoop@apollo-virtualbox:~$ cat pycharm.sh
nohup /opt/bigdata/pycharm/bin/pycharm.sh  &

(base) hadoop@apollo-virtualbox:~$ chmod +x pycharm.sh
(base) hadoop@apollo-virtualbox:~$





(base) hadoop@apollo-virtualbox:~$
(base) hadoop@apollo-virtualbox:~$ which conda
/opt/bigdata/anaconda3/bin/conda
(base) hadoop@apollo-virtualbox:~$ conda
usage: conda [-h] [-V] command ...

conda is a tool for managing and deploying applications, environments and packages.

Options:

positional arguments:
  command
    clean        Remove unused packages and caches.
    compare      Compare packages between conda environments.
    config       Modify configuration values in .condarc. This is modeled after the git config command. Writes to the user .condarc file (/home/hadoop/.condarc) by
                 default. Use the --show-sources flag to display all identified configuration locations on your computer.
    create       Create a new conda environment from a list of specified packages.
    info         Display information about current conda install.
    init         Initialize conda for shell interaction.
    install      Installs a list of packages into a specified conda environment.
    list         List installed packages in a conda environment.
    package      Low-level conda package utility. (EXPERIMENTAL)
    remove       Remove a list of packages from a specified conda environment.
    rename       Renames an existing environment.
    run          Run an executable in a conda environment.
    search       Search for packages and display associated information.The input is a MatchSpec, a query language for conda packages. See examples below.
    uninstall    Alias for conda remove.
    update       Updates conda packages to the latest compatible version.
    upgrade      Alias for conda update.
    notices      Retrieves latest channel notifications.

optional arguments:
  -h, --help     Show this help message and exit.
  -V, --version  Show the conda version number and exit.

conda commands available from other packages:
  build
  content-trust
  convert
  debug
  develop
  env
  index
  inspect
  metapackage
  pack
  render
  repo
  server
  skeleton
  token
  verify
(base) hadoop@apollo-virtualbox:~$ conda info

     active environment : base
    active env location : /opt/bigdata/anaconda3
            shell level : 1
       user config file : /home/hadoop/.condarc
 populated config files :
          conda version : 22.9.0
    conda-build version : 3.22.0
         python version : 3.9.13.final.0
       virtual packages : __linux=5.19.0=0
                          __glibc=2.35=0
                          __unix=0=0
                          __archspec=1=x86_64
       base environment : /opt/bigdata/anaconda3  (writable)
      conda av data dir : /opt/bigdata/anaconda3/etc/conda
  conda av metadata url : None
           channel URLs : https://repo.anaconda.com/pkgs/main/linux-64
                          https://repo.anaconda.com/pkgs/main/noarch
                          https://repo.anaconda.com/pkgs/r/linux-64
                          https://repo.anaconda.com/pkgs/r/noarch
          package cache : /opt/bigdata/anaconda3/pkgs
                          /home/hadoop/.conda/pkgs
       envs directories : /opt/bigdata/anaconda3/envs
                          /home/hadoop/.conda/envs
               platform : linux-64
             user-agent : conda/22.9.0 requests/2.28.1 CPython/3.9.13 Linux/5.19.0-32-generic ubuntu/22.04.1 glibc/2.35
                UID:GID : 1002:1002
             netrc file : None
           offline mode : False

(base) hadoop@apollo-virtualbox:~$
(base) hadoop@apollo-virtualbox:~$ conda create -n pyspark python=3.9
Collecting package metadata (current_repodata.json): done
Solving environment: done


==> WARNING: A newer version of conda exists. <==
  current version: 22.9.0
  latest version: 23.1.0

Please update conda by running

    $ conda update -n base -c defaults conda



## Package Plan ##

  environment location: /opt/bigdata/anaconda3/envs/pyspark

  added / updated specs:
    - python=3.9


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    ca-certificates-2023.01.10 |       h06a4308_0         120 KB
    certifi-2022.12.7          |   py39h06a4308_0         150 KB
    libffi-3.4.2               |       h6a678d5_6         136 KB
    ncurses-6.4                |       h6a678d5_0         914 KB
    openssl-1.1.1t             |       h7f8727e_0         3.7 MB
    pip-22.3.1                 |   py39h06a4308_0         2.7 MB
    python-3.9.16              |       h7a1cb2a_0        25.0 MB
    readline-8.2               |       h5eee18b_0         357 KB
    setuptools-65.6.3          |   py39h06a4308_0         1.1 MB
    sqlite-3.40.1              |       h5082296_0         1.2 MB
    tzdata-2022g               |       h04d1e81_0         114 KB
    wheel-0.38.4               |   py39h06a4308_0          64 KB
    xz-5.2.10                  |       h5eee18b_1         429 KB
    zlib-1.2.13                |       h5eee18b_0         103 KB
    ------------------------------------------------------------
                                           Total:        36.1 MB

The following NEW packages will be INSTALLED:

  _libgcc_mutex      pkgs/main/linux-64::_libgcc_mutex-0.1-main None
  _openmp_mutex      pkgs/main/linux-64::_openmp_mutex-5.1-1_gnu None
  ca-certificates    pkgs/main/linux-64::ca-certificates-2023.01.10-h06a4308_0 None
  certifi            pkgs/main/linux-64::certifi-2022.12.7-py39h06a4308_0 None
  ld_impl_linux-64   pkgs/main/linux-64::ld_impl_linux-64-2.38-h1181459_1 None
  libffi             pkgs/main/linux-64::libffi-3.4.2-h6a678d5_6 None
  libgcc-ng          pkgs/main/linux-64::libgcc-ng-11.2.0-h1234567_1 None
  libgomp            pkgs/main/linux-64::libgomp-11.2.0-h1234567_1 None
  libstdcxx-ng       pkgs/main/linux-64::libstdcxx-ng-11.2.0-h1234567_1 None
  ncurses            pkgs/main/linux-64::ncurses-6.4-h6a678d5_0 None
  openssl            pkgs/main/linux-64::openssl-1.1.1t-h7f8727e_0 None
  pip                pkgs/main/linux-64::pip-22.3.1-py39h06a4308_0 None
  python             pkgs/main/linux-64::python-3.9.16-h7a1cb2a_0 None
  readline           pkgs/main/linux-64::readline-8.2-h5eee18b_0 None
  setuptools         pkgs/main/linux-64::setuptools-65.6.3-py39h06a4308_0 None
  sqlite             pkgs/main/linux-64::sqlite-3.40.1-h5082296_0 None
  tk                 pkgs/main/linux-64::tk-8.6.12-h1ccaba5_0 None
  tzdata             pkgs/main/noarch::tzdata-2022g-h04d1e81_0 None
  wheel              pkgs/main/linux-64::wheel-0.38.4-py39h06a4308_0 None
  xz                 pkgs/main/linux-64::xz-5.2.10-h5eee18b_1 None
  zlib               pkgs/main/linux-64::zlib-1.2.13-h5eee18b_0 None


Proceed ([y]/n)? y


Downloading and Extracting Packages
pip-22.3.1           | 2.7 MB    | ########################################################################################################################## | 100%
readline-8.2         | 357 KB    | ########################################################################################################################## | 100%
certifi-2022.12.7    | 150 KB    | ########################################################################################################################## | 100%
ncurses-6.4          | 914 KB    | ########################################################################################################################## | 100%
tzdata-2022g         | 114 KB    | ########################################################################################################################## | 100%
openssl-1.1.1t       | 3.7 MB    | ########################################################################################################################## | 100%
sqlite-3.40.1        | 1.2 MB    | ########################################################################################################################## | 100%
python-3.9.16        | 25.0 MB   | ########################################################################################################################## | 100%
xz-5.2.10            | 429 KB    | ########################################################################################################################## | 100%
zlib-1.2.13          | 103 KB    | ########################################################################################################################## | 100%
wheel-0.38.4         | 64 KB     | ########################################################################################################################## | 100%
libffi-3.4.2         | 136 KB    | ########################################################################################################################## | 100%
setuptools-65.6.3    | 1.1 MB    | ########################################################################################################################## | 100%
ca-certificates-2023 | 120 KB    | ########################################################################################################################## | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
#     $ conda activate pyspark
#
# To deactivate an active environment, use
#
#     $ conda deactivate

Retrieving notices: ...working... done
(base) hadoop@apollo-virtualbox:~$
(base) hadoop@apollo-virtualbox:~$
(base) hadoop@apollo-virtualbox:~$  conda activate pyspark
(pyspark) hadoop@apollo-virtualbox:~$ python -V
Python 3.9.16
(pyspark) hadoop@apollo-virtualbox:~$ pip install pyspark
Collecting pyspark
  Downloading pyspark-3.3.2.tar.gz (281.4 MB)
     ━╸━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 13.5/281.4 MB 106.1 kB/s eta 0:42:06



 

标签:bin,02,20,22,23,INFO,scala2.13,3.3,06
From: https://www.cnblogs.com/apolloextra/p/17139216.html

相关文章

  • 2023.3.20总结
    今日软件工程课上,建明老师给我们讲解了很多关于软件工程相关知识,以及什么是“做中学”,以及如何做中学,还有如何学好软件工程布置了完成关于Android下app的制作......
  • 【博学谷学习记录】超强总结,用心分享 | this/call/apply/bind
    this的指向问题在绝大多数情况下,函数的调用方式决定了 this 的值(运行时绑定)。this 不能在执行期间被赋值,并且在每次函数被调用时 this 的值也可能会不同。简单例子......
  • 39. Combination Sum[Medium]
    39.CombinationSumGivenanarrayofdistinctintegerscandidatesandatargetintegertarget,returnalistofalluniquecombinationsofcandidateswhereth......
  • POJ 3345 Bribing FIPA
      #include<iostream>#include<map>#include<algorithm>#include<cstring>usingnamespacestd;constintN=203,M=N;typedeflonglongll;intn......
  • Letter Combinations of a Phone Number 手机的字符表示
    LetterCombinationsofaPhoneNumberGivenadigitstring,returnallpossiblelettercombinationsthatthenumbercouldrepresent.Amappingofdigittolette......
  • Centos7系统编译Hadoop3.3.4
    1、背景最近在学习hadoop,此篇文章简单记录一下通过源码来编译hadoop。为什么要重新编译hadoop源码,是因为为了匹配不同操作系统的本地库环境。2、编译源码2.1下载并解压......
  • Error处理:/bin/bash^M: 坏的解释器
    Error处理:/bin/bash^M:坏的解释器:没有该文件或目录(badinterpreter:Nosuchfileordirectory) 在Linux下编译运行脚本的时候出现”/bin/bash^M:坏的解释器:......
  • this / call / apply /bind
    对this对象的理解this是执行上下文中的一个属性,它指向最后一次调用这个方法的对象。在实际开发中,this的指向可以通过四种调用模式来判断。第一种是函数调用模式,当一个......
  • Ubuntu18.04安装glfw3.3
    https://blog.csdn.net/qq_38196982/article/details/100748027?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-5-10074......
  • 预约微软NewBing的ChatGPT
    本篇主要介绍预约体验NewBing+ChatGPT的简单方法。 新必应bing上线不久申请数都已经破百万,这个趋势来看,后面会越来越火。目前猜测来看,当前配置的还是ChatGPT3.5,后续应......