import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation="relu"), # tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation="softmax") ]) model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) model.fit(x_train, y_train, epochs=1, validation_split=0.2) model.evaluate(x_test, y_test)
标签:layers,keras,test,train,字体,tf,手写,model From: https://www.cnblogs.com/chinasoft/p/17131783.html