最初x为0,给定一个长度为n的操作序列,共有两种操作: 有m次询问,每次考虑如果忽略[l,r] 的操作,所能出现的不同的数的个数。 我们先不考虑询问,对于每一位我们考虑它经过变化后的值为多少。经过几次模拟我们发现对于第i位它的值为2*pre[i]-len,其中pre[i]表示前i位的操作2前缀和,我们考虑在一个区间内所能出现的不同的值可以表示为(max-min)+1,所以我们的问题变成了,如果取掉区间[l,r],求max([1,l-1],[r+1,n])和min([1,l-1],[r+1,n]),求区间max和区间min,我们可以用线段树来维护 考虑询问时,我们每次先消除区间[l,r]的影响,对区间[r+1,n]减去2*(pre[r]-pre[l-1])-(r-l+1) 也就是[l,r]这一段的值,然后求区间max和min,求得答案后再恢复区间[l,r]Educational Codeforces Round 102 (Rated for Div. 2)D(线段树求贡献)
D.Program
题目大意:
解题思路:
代码实现
#include<iostream>
# include<bits/stdc++.h>
using namespace std;
# define int long long
# define endl "\n"
const int N = 3e5 + 10, inf = 0x3f3f3f3f, mod = 998244353;
const int esp = 1e-6;
int prez[N];
# define ls u<<1
# define rs u<<1|1
struct segtree {
int sum[4 * N], lazy[4 * N];
int maxn[4 * N], minn[4 * N];
void ini() {
memset(lazy, 0, sizeof lazy);
memset(sum, 0, sizeof lazy);
memset(maxn, 0, sizeof maxn);
}
void pushup(int u) {
sum[u] = (sum[ls] + sum[rs]);
maxn[u] = max(maxn[ls], maxn[rs]);
minn[u] = min(minn[ls], minn[rs]);
}
void build(int u, int l, int r) {
lazy[u] = 0;
if (l == r) {
sum[u] = maxn[u] = minn[u] = 2 * prez[l] - l;
return;
}
int mid = l + r >> 1;
build(ls, l, mid);
build(rs, mid + 1, r);
pushup(u);
}
void pushdown(int u, int l, int r) {
int mid = l + r >> 1;
if (lazy[u]) {
sum[ls] += (mid - l + 1) * lazy[u];
sum[rs] += (r - mid) * lazy[u];
maxn[ls] += lazy[u];
maxn[rs] += lazy[u];
minn[ls] += lazy[u];
minn[rs] += lazy[u];
lazy[ls] += lazy[u];
lazy[rs] += lazy[u];
}
lazy[u] = 0;
}
void modify(int u, int l, int r, int L, int R, int c) {
if (l > R || r < L) return;
if (L <= l && r <= R) {
sum[u] += (r - l + 1) * c;
lazy[u] += c;
maxn[u] += c;
minn[u] += c;
return;
}
int mid = l + r >> 1;
pushdown(u, l, r);
if (L <= mid) modify(ls, l, mid, L, R, c);
if (mid + 1 <= R) modify(rs, mid + 1, r, L, R, c);
pushup(u);
}
int query_max(int u, int l, int r, int L, int R) {
if (L > r || R < l) return 0;
if (l >= L && r <= R) {
return maxn[u];
}
pushdown(u, l, r);
int mid = l + r >> 1;
if (R <= mid) return query_max(ls, l, mid, L, R);
else if (L > mid) return query_max(rs, mid + 1, r, L, R);
else return max(query_max(ls, l, mid, L, R), query_max(rs, mid + 1, r, L, R));
}
int query_min(int u, int l, int r, int L, int R) {
if (L > r || R < l) return 1e9;
if (l >= L && r <= R) {
return minn[u];
}
pushdown(u, l, r);
int mid = l + r >> 1;
if (R <= mid) return query_min(ls, l, mid, L, R);
else if (L > mid) return query_min(rs, mid + 1, r, L, R);
else return min(query_min(ls, l, mid, L, R), query_min(rs, mid + 1, r, L, R));
}
} tr;
void solve() {
int n, q;
cin >> n >> q;
for (int i = 1; i <= n; ++i) {
char c;
cin >> c;
prez[i] = prez[i - 1] + (c == '+');
}
tr.build(1, 1, n);
while (q--) {
int l, r;
cin >> l >> r;
int cnt = prez[r] - prez[l - 1];
int len = r - l + 1;
int now = 2 * cnt - len;
tr.modify(1, 1, n, r + 1, n, -now);
int maxn = max({0ll,tr.query_max(1, 1, n, 1, l - 1), tr.query_max(1, 1, n, r + 1, n)});
int minn = min({0ll,tr.query_min(1, 1, n, 1, l - 1), tr.query_min(1, 1, n, r + 1, n)});
cout << maxn - minn + 1 << endl;
tr.modify(1,1,n,r+1,n,now);
}
}
int tt;
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
tt = 1;
cin >> tt;
while (tt--) solve();
return 0;
}