思路
一个朴素的想法就是 树剖 + 可持久化 trie 树
但这样是 \(O(qm\log^2 V)\) 的,\(30s\) 跑不过去
但我们注意到,我们每次最多访问到前 \(m\log V\) 大的数
我们就可以考虑将前 \(m\log V\) 大的数取出来,从大到小枚举数位,判断是不是有 \(m\) 个数这一位上为 \(1\),如果有,那就将这一位不是 \(1\) 的数全部剔除,再判断下一位
这样单次询问是 \(m\log V \log(m\log V)\) 的
问题是如何快速取出前 \(m\log V\) 大的数
我们考虑开一棵可持久化值域线段树,存的是 \([l,r]\) 的个数
每个结点加入时继承的是它父亲的线段树
在要取出 \((u,v)\) 这条链时,我们就取出 \(u,~v,~ \text{LCA}(u,~v),~Fa_{\text{LCA}(u,~v)}\) 这四颗线段树,进行线段树二分,这样就能取出前 \(,m\log V\) 大的树了
最后的时间复杂度就是 \(O(n\log n+qm\log V \log(m\log V))\)
似乎也只是勉强能过?但实测取出的数并不需要 \(m\log V\) 个,大概 \(200\) 就可以了
代码
#include<iostream>
#include<fstream>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#define LL long long
#define FOR(i, x, y) for(int i = (x); i <= (y); i++)
#define ROF(i, x, y) for(int i = (x); i >= (y); i--)
#define PFOR(i, x) for(int i = he[x]; i; i = e[i].nxt)
inline LL reads()
{
LL sign = 1, re = 0; char c = getchar();
while(c < '0' || c > '9'){if(c == '-') sign = -1; c = getchar();}
while('0' <= c && c <= '9'){re = re * 10 + (c - '0'); c = getchar();}
return sign * re;
}
int n, m, q;
LL a[1000005], b[1000005], lastans;
struct Node
{
int to, nxt;
}e[2000005]; int he[1000005];
inline void Edge_add(int u, int v)
{
static int cnt = 0;
e[++cnt] = (Node){v, he[u]};
he[u] = cnt;
}
int fa[1000005][20], dep[1000005], rt[1000005];
int pcnt, ls[25000005], rs[25000005], sz[25000005];
int Ins(int la, int l, int r, int to)
{
int now = ++pcnt;
ls[now] = ls[la], rs[now] = rs[la], sz[now] = sz[la] + 1;
if(l == r) return now;
int mid = (l + r) >> 1;
if(to <= mid) ls[now] = Ins(ls[la], l, mid, to);
else rs[now] = Ins(rs[la], mid + 1, r, to);
return now;
}
void dfs(int now)
{
dep[now] = dep[fa[now][0]] + 1;
rt[now] = Ins(rt[fa[now][0]], 1, m, a[now]);
PFOR(i, now)
{
int to = e[i].to;
if(to == fa[now][0]) continue;
fa[to][0] = now;
dfs(to);
}
}
inline int LCA(int u, int v)
{
if(dep[u] < dep[v]) std::swap(u, v);
ROF(i, 19, 0) if(dep[fa[u][i]] >= dep[v]) u = fa[u][i];
ROF(i, 19, 0) if(fa[u][i] ^ fa[v][i])
u = fa[u][i], v = fa[v][i];
return u == v ? u : fa[u][0];
}
LL st[1000005], st1[1000005];
int lim, scnt, scnt1;
void query(int u, int v, int lca, int lcafa, int l, int r)
{
if(!lim || !(sz[u] + sz[v] - sz[lca] - sz[lcafa])) return;
if(l == r)
{
int add = std::min(lim, sz[u] + sz[v] - sz[lca] - sz[lcafa]);
while(add--) {st[++scnt] = b[l], lim--;}
return;
}
int mid = (l + r) >> 1;
query(rs[u], rs[v], rs[lca], rs[lcafa], mid + 1, r);
query(ls[u], ls[v], ls[lca], ls[lcafa], l, mid);
}
inline void solve(int u, int v, int w)
{
scnt = 0, lim = 200;
int lca = LCA(u, v);
query(rt[u], rt[v], rt[lca], rt[fa[lca][0]], 1, m);
LL ans = 0;
ROF(i, 60, 0)
{
ans |= (1ll << i);
scnt1 = 0;
FOR(j, 1, scnt)
if((st[j] & ans) == ans)
st1[++scnt1] = st[j];
if(scnt1 < w) ans ^= (1ll << i);
else
{
FOR(j, 1, scnt1) st[j] = st1[j];
scnt = scnt1;
}
}
printf("%lld\n", lastans = ans);
}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("test.in", "r", stdin);
freopen("test.out", "w", stdout);
#endif
n = reads();
FOR(i, 1, n - 1)
{
int u = reads(), v = reads();
Edge_add(u, v), Edge_add(v, u);
}
FOR(i, 1, n) a[i] = b[i] = reads();
std::sort(b + 1, b + 1 + n); m = std::unique(b + 1, b + 1 + n) - b - 1;
FOR(i, 1, n) a[i] = std::lower_bound(b + 1, b + 1 + m, a[i]) - b;
dfs(1);
FOR(i, 1, 19) FOR(j, 1, n)
fa[j][i] = fa[fa[j][i - 1]][i - 1];
q = reads();
while(q--)
{
int u = reads(), v = reads(), w = reads();
solve((u ^ lastans) % n + 1, (v ^ lastans) % n + 1, w);
}
return 0;
}
标签:撞题,sz,zjk,log,int,fa,lca,include,互测
From: https://www.cnblogs.com/zuytong/p/16658158.html