首页 > 其他分享 >闲话 23.2.14

闲话 23.2.14

时间:2023-02-14 19:24:03浏览次数:68  
标签:long return 14 int 闲话 ret T1 23.2 using

闲话

soytony 老师和 apj 老师来了
看着他俩打情骂俏真的很有意思(

今天放的歌是《阳光彩虹小白马》
guge 说:这歌就蛮好听的 提神醒脑(?)
感觉只要隔了十年 对歌的品味就会有差别
少年时的感受是长大了不会再有的吧

今日推歌:美影日记
好又一次在我脑子里循环播放了

昨日闲话引流

题解

惯例题解。其实主要是有些好玩(?)题,写写

T1 光明 (light)

场上想了个二分 + dsuontree + 树状数组的 \(O(n\log^3n)\) 做法
场下发现树状数组根本不需要 彳亍

我们发现我们可以快速求得 \(\ge\) 一个值的 \(f\) 的出现次数和求和,因此不妨考虑二分答案转化为判定。
出现次数可以考虑做 dsuontree。我们发现 \(f(u, i)\) 本质上就是 \(f(i + dep(u))\),即到根距离为 \(i\) 的数。这是经典问题了,直接做 dsuontree 即可在 \(O(n\log n)\) 的复杂度内求得 \(\ge \text{mid}\) 的 \(f(i + dep(u))\) 数量和求和。不需要树状数组,只需要在 \(f(i)\) 越过 \(\text{mid}\) 的分界线时处理即可。
因此可以做到 \(O(n\log^2 n)\)。

接下来就是卡常了。使用链式前向星存边,并将 dsuontree 的操作顺序离线即可通过。可以做到比 O(n) 正解快。

题解给出的做法是应用长链剖分维护 \(f\) 的信息,可以做到 \(O(n)\) 求解。

code: 长链剖分
#include <bits/stdc++.h>
using namespace std; 
#define int long long
using pii = pair<int,int>; using vi = vector<int>; using vp = vector<pii>; using ll = long long; 
using ull = unsigned long long; using db = double; using ld = long double; using lll = __int128_t;
template<typename T1, typename T2> T1 max(T1 a, T2 b) { return a > b ? a : b; }
template<typename T1, typename T2> T1 min(T1 a, T2 b) { return a < b ? a : b; }
#define multi int T; cin >> T; while ( T -- )
#define timer cerr << 1. * clock() / CLOCKS_PER_SEC << '\n';
#define iot ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
#define file(file) freopen(#file".in", "r", stdin), freopen(#file".out", "w", stdout)
#define rep(i,s,t) for (register int i = (s), i##_ = (t) + 1; i < i##_; ++ i)
#define pre(i,s,t) for (register int i = (s), i##_ = (t) - 1; i > i##_; -- i)
#define eb emplace_back
#define pb pop_back
const int N = 3e6 + 10;
const int inf = 0x3f3f3f3f;
const ll infll = 0x3f3f3f3f3f3f3f3fll;
using namespace std;

int n, f, t, head[N];
long long k, ans;
struct ep {
    int v, next;
} e[N];
void add(int u, int v) {
    e[++t].v = v;
    e[t].next = head[u];
    head[u] = t;
}

int dis[N], son[N], len[N], dep[N];
void dfs1(int u, int f) {
    dep[u] = dep[f] + 1;
    for (int i = head[u]; i; i = e[i].next) {
        dfs1(e[i].v, u);
        if (dis[son[u]] < dis[e[i].v]) son[u] = e[i].v;
    } dis[u] = dis[son[u]] + 1;
}

void dfs2(int u, int tp) {
    len[u] = dep[u] - dep[tp] + 1;
    if (son[u]) dfs2(son[u], tp);
    for (int i = head[u]; i; i = e[i].next) 
        if (e[i].v != son[u]) dfs2(e[i].v, e[i].v);
}

int s[N], buf[N];
int *dp[N], *now = buf;
void dfs(int u) {
    if (son[u]) dp[son[u]] = dp[u] + 1, dfs(son[u]);
    int mx = 0;
    for (int i = head[u]; i; i = e[i].next) if (e[i].v != son[u])
        mx = max(mx, dis[e[i].v]);
    rep(i,1,mx) s[dp[u][i]] -= len[u];
    dp[u][0] = 1;
    for (int i = head[u]; i; i = e[i].next) if (e[i].v != son[u]) {
        dp[e[i].v] = now;
        now += dis[e[i].v];
        dfs(e[i].v);
        for (int j = 1; j <= dis[e[i].v]; j++) dp[u][j] += dp[e[i].v][j - 1];
    } rep(i,0,mx) s[dp[u][i]] += len[u];
}

signed main() {
    cin >> n >> k;
    rep(i,2,n) cin >> f, add(f, i);
    dfs1(1, 0), dfs2(1, 1);
    dp[1] = now; now += dis[1];
    dfs(1);
    pre(i,n,1) {
        long long ret = min(k, 1ll * s[i]);
        ans += 1ll * ret * i, k -= ret;
    } cout << ans << '\n';
}
code: dsuontree
#include <bits/stdc++.h>
using namespace std; 
using pii = pair<int,int>; using vi = vector<int>; using vp = vector<pii>; using ll = long long; 
using ull = unsigned long long; using db = double; using ld = long double; using lll = __int128_t;
template<typename T1, typename T2> T1 max(T1 a, T2 b) { return a > b ? a : b; }
template<typename T1, typename T2> T1 min(T1 a, T2 b) { return a < b ? a : b; }
#define multi int T; cin >> T; while ( T -- )
#define timer cerr << 1. * clock() / CLOCKS_PER_SEC << '\n';
#define file(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define rep(i,s,t) for (register int i = (s), i##_ = (t) + 1; i < i##_; ++ i)
#define pre(i,s,t) for (register int i = (s), i##_ = (t) - 1; i > i##_; -- i)
#define eb emplace_back
#define pb pop_back
const int N = 3e6 + 10;
int n, fa[N], dep[N], mxdp;
ll k;

namespace sol { 
    #define Aster(u) for (int i = head[u], v; i; i = e[i].nxt)
    int head[N], mlc;
    struct ep {
        int to, nxt;
    } e[N];
    void adde(int u, int v) {
        e[++ mlc] = {v, head[u]}; head[u] = mlc;
    }

    int siz[N], son[N];
    void dfs1(int u) {
        siz[u] = 1;
        Aster(u) {
            dfs1(v = e[i].to); siz[u] += siz[v];
            if (siz[v] >= siz[son[u]])
                son[u] = v;
        }
    }

    namespace dsucnt {
        ll ret, now;
        int f[N], bnd;

        int cnt, opr[70000000];
        
        void addans(int u) {
            opr[++ cnt] = dep[u];
            Aster(u) addans(e[i].to);
        }
        void clear(int u) {
            opr[++ cnt] = - dep[u];
            Aster(u) clear(e[i].to);
        }

        void dsu(int u, bool need_clear) {
            Aster(u) if ((v = e[i].to) != son[u])
                dsu(v, 1);
            if (son[u]) dsu(son[u], 0);
            Aster(u) if ((v = e[i].to) != son[u])
                addans(v);
            opr[++ cnt] = dep[u];
            opr[++ cnt] = 0;
            if (need_clear) clear(u);
        }

        void init() { dsu(1, 1); }

        ll calc(int val) { 
            ret = 0, bnd = val, now = 0;
            if (bnd == 0) now = n;
            rep(i,1,cnt) {
                if (opr[i] == 0) ret += now;
                else {
                    if (opr[i] < 0) {
                        f[- opr[i]] --;
                        (f[- opr[i]] == bnd - 1) && (-- now, true);
                    } else {
                        f[opr[i]] ++;
                        (f[opr[i]] == bnd) && ++ now;
                    }
                }
            } return ret;
        }
    }
   
    namespace dsuval {
        ll ret, bnd, now;
        int f[N];
        
        void addans(int u) {
            int &x = f[dep[u]];
            (x >= bnd) && (now -= x);
            x ++; 
            (x >= bnd) && (now += x);
            Aster(u) addans(e[i].to);
        }
        void clear(int u) {
            int &x = f[dep[u]];
            (x >= bnd) && (now -= x);
            x --; 
            (x >= bnd) && (now += x);
            Aster(u) clear(e[i].to);
        }

        void dsu(int u, bool need_clear) {
            Aster(u) (e[i].to != son[u]) && (dsu(e[i].to, 1), 1);
            if (son[u]) dsu(son[u], 0);
            Aster(u) (e[i].to != son[u]) && (addans(e[i].to), 1);
            int &x = f[dep[u]];
            (x >= bnd) && (now -= x);
            x ++; 
            (x >= bnd) && (now += x);
            ret += now;
            if (need_clear) clear(u);
        }

        ll calc(int val) {
            ret = 0; bnd = val;
            dsu(1, 0);
            return ret;
        }
    }

    void main() {
        rep(i,2,n) adde(fa[i], i);
        dfs1(1);
        int l = 1, r = mxdp, mid, kth = 0;
        dsucnt :: init(); cerr << dsucnt :: cnt << '\n';
        while (l <= r) {
            mid = l + r >> 1;
            if (dsucnt :: calc(mid) >= k) kth = mid, l = mid + 1;
            else r = mid - 1;
        } 
        cout << dsuval :: calc(kth + 1) + 1ll * (k - dsucnt :: calc(kth + 1)) * kth << '\n';
    }
}

signed main() {
    cin >> n >> k;
    dep[1] = 1;
    rep(i,2,n) cin >> fa[i], dep[i] = dep[fa[i]] + 1;
    mxdp = *max_element(dep + 1, dep + 1 + n);
    sol :: main();
}



T2 游戏 (game)

容易看出我们需要计数的就是 \(n\) 长度序列染 \(m\) 种颜色的方案,使得至少存在一条长度 \(\ge 2k - 1\) 的颜色连续段。下面记 \(k = 2k - 1\)。

我们考虑计算不存在这样的连续段的染色方案,然后用 \(m^n\) 减去即可。

这可以 dp 求解。具体的,设 \(f(n)\) 为考虑前 \(n\) 个位置的染色情况(\(f(n) = 0\) 对所有 \(n \le 0\) 成立),并直接枚举最后一段长度得到

\[f(n) = (m - 1) \sum_{i = 1}^{k - 1} f(n - i) \]

答案即为 \(\frac{m}{m - 1} f(n)\)。

我们可以构造出 \(f\) 的生成函数 \(F(x)\),因为其满足

\[F = (m - 1) \sum_{i = 1}^{k - 1} x^i F + 1 \]

\[F(x) = \frac{1 - x}{1 - mx + (m - 1)x^k} \]

不考虑乘 \(1 - x\),我们也可以提取它的第 \(n\) 项系数:

\[\begin{aligned} & [x^n]\left(1 - mx + (m - 1)x^k\right)^{-1} \\ = \ & [x^n]\sum_{i \ge 0} (-1)^i \left(- mx + (m - 1)x^k\right)^{i} \\ = \ & [x^n]\sum_{i \ge 0} \left( mx + (1 - m)x^k\right)^{i} \\ = \ & [x^n]\sum_{i \ge 0} \sum_{j \ge 0} \binom{i}{j} m^{i - j} (1 - m)^{j} x^{jk + i - j} \\ = \ & [x^n]\sum_{i \ge 0} \sum_{j \ge 0} \binom{i}{j} m^{i - j} (1 - m)^{j} x^{jk + i - j} \\ = \ & \sum_{j \ge 0} \binom{n - j(k - 1)}{j} m^{n - jk} (1 - m)^{j} \end{aligned}\]

可以发现直接 lucas 方法求的复杂度是 \(O(n / k \log_p(n))\) 的。这样在 \(k\) 很小的时候复杂度会炸。怎么办呢?

考虑阈值分治。
我们发现,当 \(k\) 小的时候我们可以直接应用 Bostan-Mori 算法,做到 \(O(k\log k\log n)\),而当 \(k\) 大的时候直接处理组合数即可 \(O(n / k \log_p(n))\)。
这样当 \(k \log k \ge \sqrt n\) 时处理组合数,反之作线性递推即可。

code
// ubsan: undefined
// accoders
#include <bits/stdc++.h>
using namespace std; 
using pii = pair<int,int>; using vi = vector<int>; using vp = vector<pii>; using ll = long long; 
using ull = unsigned long long; using db = double; using ld = long double; using lll = __int128_t;
template<typename T1, typename T2> T1 max(T1 a, T2 b) { return a > b ? a : b; }
template<typename T1, typename T2> T1 min(T1 a, T2 b) { return a < b ? a : b; }
#define multi int T; cin >> T; while ( T -- )
#define timer cerr << 1. * clock() / CLOCKS_PER_SEC << '\n';
#define iot ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
#define file(file) freopen(#file".in", "r", stdin), freopen(#file".out", "w", stdout)
#define rep(i,s,t) for (register int i = (s), i##_ = (t) + 1; i < i##_; ++ i)
#define pre(i,s,t) for (register int i = (s), i##_ = (t) - 1; i > i##_; -- i)
#define eb emplace_back
#define pb pop_back
const int N = 3e6 + 10;
const int inf = 0x3f3f3f3f;
const ll infll = 0x3f3f3f3f3f3f3f3fll;
ll n, k, m;

int mod = 998244353;
int qp(int a, int b, int p = mod) {
	int ret = 1;
	while (b) {
		if (b & 1) ret = 1ll * ret * a % p;
		a = 1ll * a * a % p;
		b >>= 1;
	} return ret;
}

using db = double;
struct cp {
    db x, y;
    cp(db real = 0, db imag = 0) : x(real), y(imag){};
    cp operator+(cp b) const { return {x + b.x, y + b.y}; }
    cp operator-(cp b) const { return {x - b.x, y - b.y}; }
    cp operator*(cp b) const { return {x * b.x - y * b.y, x * b.y + y * b.x}; }
};
using vcp = vector<cp>;
namespace FFT {
    const db pi = acos(-1);
    vcp Omega(int L) {
        vcp w(L); w[1] = 1;
        for (register int i = 2; i < L; i <<= 1) {
            auto w0 = w.begin() + i / 2, w1 = w.begin() + i;
            cp wn(cos(pi / i), sin(pi / i));
            for (register int j = 0; j < i; j += 2)
                w1[j] = w0[j >> 1], w1[j + 1] = w1[j] * wn;
        } return w;
    } auto W = Omega(1 << 21);

    void DIF(cp *a, int n) {
        cp x, y;
        for (register int k = n >> 1; k; k >>= 1)
            for (register int i = 0; i < n; i += k << 1)
                for (register int j = 0; j < k; ++j)
                    x = a[i + j], y = a[i + j + k],
                    a[i + j + k] = (x - y) *  W[k + j], a[i + j] = x + y;
    }
    void IDIT(cp *a, int n) {
        cp x, y;
        for (register int k = 1; k < n; k <<= 1)
            for (register int i = 0; i < n; i += k << 1)
                for (register int j = 0; j < k; ++j)
                    x = a[i + j], y = a[i + j + k] * W[k + j],
                    a[i + j + k] = x - y, a[i + j] = x + y;
        const db Inv = 1. / n;
        rep(i, 0, n - 1) a[i].x *= Inv, a[i].y *= Inv;
        reverse(a + 1, a + n);
    }
} 
namespace Polynomial {
    using poly = vector<int>;

    void DFT(vcp &a) { FFT::DIF(a.data(), a.size()); }
    void IDFT(vcp &a) { FFT::IDIT(a.data(), a.size()); }
    int norm(int n) { return 1 << (__lg(n - 1) + 1); }
    
    poly operator*(poly &a, poly &b) {
        int n = a.size() + b.size() - 1;
        vcp c(norm(n));
        rep(i, 0, a.size() - 1) c[i].x = a[i];
        rep(i, 0, b.size() - 1) c[i].y = b[i];
        DFT(c);
        rep(i, 0, a.size() - 1) c[i] = c[i] * c[i];
        IDFT(c), a.resize(n);
        rep(i, 0, n - 1) a[i] = int(c[i].y * .5 + .5);
        return a;
    }

    poly conv(const poly &a, const poly &b, const int&P = mod) {
        int n = a.size(), m = b.size(), o = n + m - 1, l = norm(o);
        vcp A(l), B(l), c0(l), c1(l);
        for (register int i = 0; i < n; i++) A[i] = cp(a[i] & 0x7fff, a[i] >> 15);
        for (register int i = 0; i < m; i++) B[i] = cp(b[i] & 0x7fff, b[i] >> 15);
        FFT::DIF(A.data(), l), FFT::DIF(B.data(), l);
        for (register int k = 1, i = 0, j; k < l; k <<= 1)
            for ( ; i < k * 2; i++) {
                j = i ^ k - 1;
                c0[i] = cp(A[i].x + A[j].x, A[i].y - A[j].y) * B[i] * 0.5;
                c1[i] = cp(A[i].y + A[j].y, -A[i].x + A[j].x) * B[i] * 0.5;
            }
        FFT::IDIT(c0.data(), l), FFT::IDIT(c1.data(), l);
        poly res(o);
        for (register int i = 0; i < o; i++) {
            ll c00 = c0[i].x + 0.5, c01 = c0[i].y + 0.5, c10 = c1[i].x + 0.5, c11 = c1[i].y + 0.5;
            res[i] = (c00 + ((c01 + c10) % P << 15) + (c11 % P << 30)) % P;
        }
        return res;
    }

	poly Inv(const poly& f, const int &p = mod) {
		int o = f.size(), _n = norm(o); poly g(1), h;
		g[0] = qp(f[0], p - 2, p);
		for (int len = 2; len <= _n; len <<= 1) {
			h.assign(f.begin(), f.begin() + min(len, (int)f.size()));
			h = conv( g, conv( g, h, p ), p );
			g.resize(len);
			for (int i = 0; i < len; ++ i) 
				g[i] = (2ll * g[i] - h[i] + p) % p;
		} g.resize(o);
		return g;
	}

    poly Deri(const poly& f, const int& p = mod) {
        poly ret; ret.resize(f.size());
        for (int i = 0; i + 1 < f.size(); ++i) {
            ret[i] = 1ll * f[i+1] * (i+1) % p;
        } return ret;
    } poly Intg(const poly& f, const int& p = mod) {
        poly ret; ret.resize(f.size());
        static int __Inv[N]; __Inv[0] = __Inv[1] = 1;
        for (int i = 2; i < f.size(); ++ i) 
            __Inv[i] = 1ll * (p - p / i) * __Inv[p % i] % p;
        for (int i = f.size() - 1; i >= 1; --i) {
            ret[i] = 1ll * f[i-1] * __Inv[i] % p;
        } return ret;
    }

    poly Ln(const poly& f, const int& p = mod) {
        poly ret = Deri(f, p), Iv = Inv(f, p);
        ret = conv(ret, Iv, p); ret = Intg(ret, p); 
        ret.resize(f.size());
        return ret;
    } 
    poly Exp(const poly& f, const int& p = mod) {
        poly ret; ret.resize(1); ret[0] = 1;
        poly A, B;
        for (register int len = 2; len < (f.size() << 1); len <<= 1) {
            ret.resize(len); A = Ln(ret);
            B.assign(f.begin(), f.begin() + min(len, (int)f.size()));
            if (B.size() < A.size()) B.resize(A.size());
            for (int i = 0; i < A.size(); ++ i){
                B[i] -= A[i]; if (B[i] < 0) B[i] += p;
            } B[0]++; ret = conv(ret, B);
            ret.resize(len);
        } ret.resize(f.size()); 
        return ret;
    }
} using namespace Polynomial;

/* add / sub */ 			template<typename T1,typename T2>T1 add(T1 a,T2 b){return(a+=b)>=mod?a-mod:a;}template<typename T1,typename...Args>T1 add(T1 a,Args...b){return add(a,add(b...));}template<typename T1,typename T2>T1 sub(T1 a,T2 b){return(a-=b)<0?a+mod:a;}template<typename T1,typename...Args>T1 sub(T1 a,Args...b){return sub(a,add(b...));}template<typename T1,typename T2>void addi(T1&a,T2 b){(a+=b)>=mod?(a-=mod):true;}template<typename T1,typename...Args>void addi(T1&a,Args...b){addi(a,add(b...));}template<typename T1,typename T2>void subi(T1&a,T2 b){(a-=b)<0?(a+=mod):true;}template<typename T1,typename...Args>void subi(T1&a,Args...b){subi(a,add(b...));}
/* Fastmod / mul */ 		struct FastMod{int m;ll b;void init(int _m){m=_m;if(m==0)m=1;b=((lll)1<<64)/m;}FastMod(int _m){init(_m);}int operator()(ll a){ll q=((lll)a*b)>>64;a-=q*m;if(a>=m)a-=m;return a;}}Mod(mod);int mul(int a,int b){return Mod(1ll*a*b);}template<typename T1,typename T2>int mul(T1 a,T2 b){return Mod((long long)(1ll*a*b));}template<typename T,typename...Args>int mul(T a,Args...b){return mul(a,mul(b...));}template<typename T1,typename T2>void muli(T1&a,T2 b){a=Mod(1ll*a*b);}template<typename T1,typename...Args>void muli(T1&a,Args...b){muli(a,mul(b...));} // /* trivial multiple function(idk whether its useful*/ int mul(int a, int b) { return 1ll * a * b % mod; } template <typename T1, typename T2> int mul(T1 a, T2 b) { return (long long)(1ll * a * b) % mod; } template <typename T, typename ...Args> int mul(T a, Args ...b) { return mul(a, mul(b...)); }
/* qp fac C */              template<typename T1,typename T2>T1 qp(T1 a,T2 b){T1 ret=1;for(;b>0;a=1ll*a*a%mod,b>>=1)if(b&1)ret=mul(ret,a);return ret;}vi __fac({1,1}),__ifc({1,1}),__inv({0,1});inline void ___prep(int n){static int i=2;if(i<n)for(__fac.resize(n),__ifc.resize(n),__inv.resize(n);i<n;i++)__fac[i]=mul(i,__fac[i-1]),__inv[i]=mul((mod-mod/i),__inv[mod%i]),__ifc[i]=mul(__inv[i],__ifc[i-1]);}inline int fac(int x){return ___prep(x+1),__fac[x];}inline int ifc(int x){return ___prep(x+1),__ifc[x];}inline int inv(int x){return ___prep(x+1),__inv[x];}
// /* sum of i^k */            int S(int n,int k){vector<int>__pre(k+4),__suf(k+4),__pw(k+4),__pri(k+4);vector<bool>__vis(k+4,0);__pw[1]=1;for(int i=2,cnt=0;i<=k+2;++i){if(!__vis[i])__pri[++cnt]=i,__pw[i]=qp(i,k);for(int j=1;j<=cnt and i*__pri[j]<=k+2;++j){__vis[i*__pri[j]]=1;__pw[i*__pri[j]]=mul(__pw[i],__pw[__pri[j]]);if(i%__pri[j]==0)break;}}rep(i,2,k+2)__pw[i]=add(__pw[i],__pw[i-1]);__pre[0]=__suf[k+3]=1;rep(i,1,k+2)__pre[i]=mul(__pre[i-1],(n-i+mod));pre(i,k+2,1)__suf[i]=mul(__suf[i+1],(n-i+mod));int tmp=0,ret=0;rep(i,1,k+2){if((k-i)&1)subi(ret,mul(__pw[i],__pre[i-1],__suf[i+1],ifc(i-1),ifc(k+2-i)));else addi(ret,mul(__pw[i],__pre[i-1],__suf[i+1],ifc(i-1),ifc(k+2-i)));}return ret;}
// /* inv 2/3/6 / phi */ 		constexpr int __var_pow(int a, int b) { int ret = 1; for (; b > 0; b >>= 1, a = 1ll * a * a % mod) if (b & 1) ret = 1ll * ret * a % mod; return ret; } constexpr int __var_phi(int x) { if (x <= 2) return 1; int ret = x; for (int i = 2; 1ll * i * i <= x; ++i)  if (x % i == 0) { ret = ret / i * (i - 1); while (x % i == 0) x /= i; } if (x > 1) ret = ret / x * (x - 1); return ret; } const int __phi_mod = __var_phi(mod); const int inv2 = __var_pow(2, __phi_mod - 1), inv3 = __var_pow(3, __phi_mod - 1), inv6 = __var_pow(6, __phi_mod - 1);

inline int C(int n, int k) { 
    int ret = 1;
    while (n or k) {
        int _n = n % mod, _k = k % mod;
        if (_n < _k) return 0;
        muli(ret, fac(_n), ifc(_k), ifc(_n - _k));
        n /= mod, k /= mod;
    } return ret;
}

int solve(int n) {
    int ret = 0;
    for (int i = 0; 1ll * i * k <= n; ++ i) {
        addi(ret, mul(C(n - (k - 1) * i, i), qp(m, n - k * i), qp(sub(1, Mod(m)), i)));
    }
    return ret;
}

int main() {
    iot; file(game);
    cin >> n >> m >> k >> mod; Mod.init(mod);
    if (k == 1) return cout << qp(m, n) << '\n', 0; 
    k = (k << 1) - 1;
    int tot = qp(m, n);
    poly P(k + 1), Q(k + 1), tmp(k + 2);
    P[0] = 1, P[1] = mod - 1;
    Q[0] = 1, Q[1] = sub(0, Mod(m)), Q[k] = sub(Mod(m), 1);
    while (k * log2(k) > sqrt(n)) {
        rep(i,0,k) tmp[i] = mul(i & 1 ? mod - 1 : 1, Q[i]);
        P = conv(tmp, P), Q = conv(tmp, Q);
        rep(i,0,k) Q[i] = Q[i << 1], P[i] = P[i << 1 | (n & 1)];
        P.resize(k + 1), Q.resize(k + 1);
        n >>= 1;
    } 
    cout << sub(tot, mul(m, qp(m - 1, mod - 2), P[0], qp(Q[0], mod - 2))) << '\n';
}



T3 皇后 (queen)

我没用调整法,但是膜 dengls

我的做法是基于暴力的随机化优化。我们可以顺着扫每一行,对每行遍历所有可能求解的列即可。这样的复杂度是 O(跑不动大于 50 的点)。
然后考虑随机化。我们记录当前可以填的所有列,过程中用 vector 暴力维护即可。在每一行复制这个 vector 后 shuffle,按随机顺序递归求解。
在多次重复(跑一分钟没有出解就退出程序再跑一次)和足够的运气下,我们能在 10s 内不稳定地得到 \(\le 50000\) 的任意答案。

感性理解程序的表现,我们能发现 n 皇后问题的解是相对多的,我们只要能进入一个搜索树的子树即可。

存在 \(O(n)\) 的直接构造法。

code:打表程序
#include <bits/stdc++.h>
using namespace std; 
using pii = pair<int,int>; using vi = vector<int>; using vp = vector<pii>; using ll = long long; 
using ull = unsigned long long; using db = double; using ld = long double; using lll = __int128_t;
template<typename T1, typename T2> T1 max(T1 a, T2 b) { return a > b ? a : b; }
template<typename T1, typename T2> T1 min(T1 a, T2 b) { return a < b ? a : b; }
#define multi int T; cin >> T; while ( T -- )
#define timer cerr << 1. * clock() / CLOCKS_PER_SEC << '\n';
#define iot ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
#define file(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define rep(i,s,t) for (register int i = (s), i##_ = (t) + 1; i < i##_; ++ i)
#define pre(i,s,t) for (register int i = (s), i##_ = (t) - 1; i > i##_; -- i)
#define eb emplace_back
#define pb pop_back
const int N = 3e5 + 10;
const int inf = 0x3f3f3f3f;
const ll infll = 0x3f3f3f3f3f3f3f3fll;
int n, heng[N], shu[N], zuox[N << 1], youx[N << 1];
mt19937 rnd(random_device { } ());
vector<int> vec;
vp ans;

bool place(int x, int y) {
	if (heng[x] or shu[y] or zuox[x + y] or youx[x - y + n + 1]) return false;
	heng[x] ++, shu[y] ++;
	zuox[x + y] ++, youx[x - y + n + 1] ++;
	ans.eb(x, y);
	vec.erase(lower_bound(vec.begin(), vec.end(), y));
	return true;
}

void erase(int x, int y) {
	heng[x] --, shu[y] --;
	zuox[x + y] --, youx[x - y + n + 1] --;
	vec.insert(lower_bound(vec.begin(), vec.end(), y), y);
	ans.pop_back();
}

void dfs(int x) {
	if (x == n + 1) {
		for (auto [x, y] : ans) {
			cout << x << ' ' << y << '\n';
		}
        timer;
        exit(0);
	} 
	vi g = vec;
    shuffle(g.begin(), g.end(), rnd);
	for (auto y : g) {
		if (place(x, y)) {
			dfs(x + 1);
			erase(x, y);
		}
	}
}

signed main() {
	cin >> n;
	rep(i,1,n) vec.eb(i);
	dfs(1);
	puts("-1");
    timer;
}

标签:long,return,14,int,闲话,ret,T1,23.2,using
From: https://www.cnblogs.com/joke3579/p/chitchat230214.html

相关文章

  • 2.14 背包学习
    12.背包问题求具体方案思路背包问题求具体方案类似于求最短路径问题对于求具体方案来说,可以由最后的最大价值逆推原因是:01背包问题的集合划分就是依靠第i个物品选不选......
  • 2023-2-14 微信小程序 <view>组件字体居中 方法
    当我想要编辑一行文本时,第一个想到的方法是:直接在view组件里面打上想要的字,再设置其text-align属性为centertest.wxml<viewclass="test">测试</view>test.wxss.test......
  • [leetcode每日一题]2.14
    ​​1124.表现良好的最长时间段​​难度中等253给你一份工作时间表 ​​hours​​,上面记录着某一位员工每天的工作小时数。我们认为当员工一天中的工作小时数大于 ​​8......
  • 1462 - 小明的游泳时间
         ......
  • CF--EDU--142
    D.FixedPrefixPermutations思路字典树的应用因为要对前面已经有过的信息进行筛选,可以用字典树来进行维护思路#include<bits/stdc++.h>usingnamespacestd;usin......
  • 20230214 T3 绝对伏特加(vodka)
    Vodka题目描述Alan喝了假的绝对伏特加,想问你一个问题:Alan在玩骰子游戏,Alan会玩\(n\)轮骰子,每轮的数值在\([1,K]\)中随机出现。记\(a_i\)表示\(n\)轮投掷中,......
  • 2022.2.14 每日十题
    一个组织正在采用敏捷的思维方式。在第一个敏捷项目中,项目经理面临一个问题,因为团队不能及时做出决定。项目经理应该怎么做来解决这个问题?A.为新的组织政策下的决策制定......
  • C/C++产品销售统计系统[2023-02-14]
    C/C++产品销售统计系统[2023-02-14]题目15: 产品销售统计一家公司生产五种产品,每种产品在一个月内每周的生产数量和销售价格都要记录下来。下面是一个二维的表格,表格的每......
  • C/C++图书入库管理系统[2023-02-14]
    C/C++图书入库管理系统[2023-02-14]题目21图书入库管理系统【说明及要求】实现图书信息(书号、书名、作者、定价、数量)的新增、修改、删除和查询功能;实现入库信息(书......
  • C/C++便条管理系统[2023-02-14]
    C/C++便条管理系统[2023-02-14]便条管理系统某公司有四个销售员(编号:1-4),负责销售五种产品(编号:1-5)。每个销售员都将当天出售的每种产品各写一张便条交上来。每张便......