接上篇 通过一个示例形象地理解C# async await 非并行异步、并行异步、并行异步的并发量控制
前些天写了两篇关于C# async await异步的博客,
第一篇博客看的人多,点赞评论也多,我想应该都看懂了,比较简单。
第二篇博客看的人少,点赞的也少,没有评论。
我很纳闷,第二篇博客才是重点,如此吊炸天的代码,居然没人评论。
这个代码,就是.NET圈的顶级大佬也没有写过,为什么这么说,这就要说到C# async await的语法糖:
没有语法糖,代码一样写,java8没有语法糖,一样写出很厉害的代码。但有了C# async await语法糖,普通的水平一般的业务程序员,哪怕是菜B,也能写出高吞吐高性能的代码,这就是意义!
所以我说顶级大佬没写过,因为他们水平高,脑力好,手段多,自然不需要这么写。但普通程序员要那样写代码,麻烦不说,BUG频出。
标题我用了"探索"这个词,有没有更好的实践,让小白们都会写的并行异步的实践?
ElasticSearch的性能
代码的实用价值,是查询es。
最近发现es的性能非常好!先给大家看个控制台输出的截图。服务我是部署在服务器上的,真实环境,不是自己电脑。
379次es查询,仅需0.185秒,当然耗时会有波动,零点几秒都是正常的,超过1秒也有可能。
es最怕的是什么,是慢查询,是条件复杂的查询,是范围查询。
我的策略是多次精确查询,这样可以利用es极高的吞吐能力。
并行异步
既然查询次数多,单线程或者说同步肯定是不行的,必须并行。
并行代码,python能写吗?java能写吗?肯定能啊!
但我前同事写的python多次查询es写的就是同步代码,为什么不并行呢?并行肯定可以写,但是能不写就不写,为什么?因为写起来复杂,不好写。你以为自己技术好,脑力好没问题,但别人呢?
重点是什么?不仅要写并行代码,还要写的简单,不破坏代码原有逻辑结构。
异步方法
大家都会写的,用async await就行了,很简单,放个我写的,代码主要是在双循环中多次异步请求(大致看一下先跳过):
/// <summary>
/// xxx查询
/// </summary>
public async Task<List<AccompanyInfo>> Query2(string strStartTime, string strEndTime, int kpCountThreshold, int countThreshold, int distanceThreshold, int timeThreshold, List<PeopleCluster> peopleClusterList)
{
List<AccompanyInfo> resultList = new List<AccompanyInfo>();
Stopwatch sw = Stopwatch.StartNew();
//创建字典
Dictionary<string, PeopleCluster> clusterIdPeopleDict = new Dictionary<string, PeopleCluster>();
foreach (PeopleCluster peopleCluster in peopleClusterList)
{
foreach (string clusterId in peopleCluster.ClusterIds)
{
if (!clusterIdPeopleDict.ContainsKey(clusterId))
{
clusterIdPeopleDict.Add(clusterId, peopleCluster);
}
}
}
int queryCount = 0;
Dictionary<string, AccompanyInfo> dict = new Dictionary<string, AccompanyInfo>();
foreach (PeopleCluster people1 in peopleClusterList)
{
List<PeopleFeatureInfo> peopleFeatureList = await ServiceFactory.Get<PeopleFeatureQueryService>().Query(strStartTime, strEndTime, people1);
queryCount++;
foreach (PeopleFeatureInfo peopleFeatureInfo1 in peopleFeatureList)
{
DateTime capturedTime = DateTime.ParseExact(peopleFeatureInfo1.captured_time, "yyyyMMddHHmmss", CultureInfo.InvariantCulture);
string strStartTime2 = capturedTime.AddSeconds(-timeThreshold).ToString("yyyyMMddHHmmss");
string strEndTime2 = capturedTime.AddSeconds(timeThreshold).ToString("yyyyMMddHHmmss");
List<PeopleFeatureInfo> peopleFeatureList2 = await ServiceFactory.Get<PeopleFeatureQueryService>().QueryExcludeSelf(strStartTime2, strEndTime2, people1);
queryCount++;
if (peopleFeatureList2.Count > 0)
{
foreach (PeopleFeatureInfo peopleFeatureInfo2 in peopleFeatureList2)
{
string key = null;
PeopleCluster people2 = null;
string people2ClusterId = null;
if (clusterIdPeopleDict.ContainsKey(peopleFeatureInfo2.cluster_id.ToString()))
{
people2 = clusterIdPeopleDict[peopleFeatureInfo2.cluster_id.ToString()];
key = $"{string.Join(",", people1.ClusterIds)}_{string.Join(",", people2.ClusterIds)}";
}
else
{
people2ClusterId = peopleFeatureInfo2.cluster_id.ToString();
key = $"{string.Join(",", people1.ClusterIds)}_{string.Join(",", people2ClusterId)}";
}
double distance = LngLatUtil.CalcDistance(peopleFeatureInfo1.Longitude, peopleFeatureInfo1.Latitude, peopleFeatureInfo2.Longitude, peopleFeatureInfo2.Latitude);
if (distance > distanceThreshold) continue;
AccompanyInfo accompanyInfo;
if (dict.ContainsKey(key))
{
accompanyInfo = dict[key];
}
else
{
accompanyInfo = new AccompanyInfo();
dict.Add(key, accompanyInfo);
}
accompanyInfo.People1 = people1;
if (people2 != null)
{
accompanyInfo.People2 = people2;
}
else
{
accompanyInfo.ClusterId2 = people2ClusterId;
}
AccompanyItem accompanyItem = new AccompanyItem();
accompanyItem.Info1 = peopleFeatureInfo1;
accompanyItem.Info2 = peopleFeatureInfo2;
accompanyInfo.List.Add(accompanyItem);
accompanyInfo.Count++;
resultList.Add(accompanyInfo);
}
}
}
}
resultList = resultList.FindAll(a => (a.People2 != null && a.Count >= kpCountThreshold) || a.Count >= countThreshold);
//去重
int beforeDistinctCount = resultList.Count;
resultList = resultList.DistinctBy(a =>
{
string str1 = string.Join(",", a.People1.ClusterIds);
string str2 = a.People2 != null ? string.Join(",", a.People2.ClusterIds) : string.Empty;
string str3 = a.ClusterId2 ?? string.Empty;
StringBuilder sb = new StringBuilder();
foreach (AccompanyItem item in a.List)
{
var info2 = item.Info2;
sb.Append($"{info2.camera_id},{info2.captured_time},{info2.cluster_id}");
}
return $"{str1}_{str2}_{str3}_{sb}";
}).ToList();
sw.Stop();
string msg = $"xxx查询,耗时:{sw.Elapsed.TotalSeconds:0.000} 秒,查询次数:{queryCount},去重:{beforeDistinctCount}-->{resultList.Count}";
Console.WriteLine(msg);
LogUtil.Info(msg);
return resultList;
}
异步方法的并行化
上述代码是没有问题的,但也有问题。就是在双循环中多次请求,虽然用了async await,但不是并行,耗时会很长,如何优化?请看如下代码:
/// <summary>
/// xxx查询
/// </summary>
public async Task<List<AccompanyInfo>> Query(string strStartTime, string strEndTime, int kpCountThreshold, int countThreshold, int distanceThreshold, int timeThreshold, List<PeopleCluster> peopleClusterList)
{
List<AccompanyInfo> resultList = new List<AccompanyInfo>();
Stopwatch sw = Stopwatch.StartNew();
//创建字典
Dictionary<string, PeopleCluster> clusterIdPeopleDict = new Dictionary<string, PeopleCluster>();
foreach (PeopleCluster peopleCluster in peopleClusterList)
{
foreach (string clusterId in peopleCluster.ClusterIds)
{
if (!clusterIdPeopleDict.ContainsKey(clusterId))
{
clusterIdPeopleDict.Add(clusterId, peopleCluster);
}
}
}
//组织第一层循环task
Dictionary<PeopleCluster, Task<List<PeopleFeatureInfo>>> tasks1 = new Dictionary<PeopleCluster, Task<List<PeopleFeatureInfo>>>();
foreach (PeopleCluster people1 in peopleClusterList)
{
var task1 = ServiceFactory.Get<PeopleFeatureQueryService>().Query(strStartTime, strEndTime, people1);
tasks1.Add(people1, task1);
}
//计算第一层循环task并缓存结果,组织第二层循环task
Dictionary<string, Task<List<PeopleFeatureInfo>>> tasks2 = new Dictionary<string, Task<List<PeopleFeatureInfo>>>();
Dictionary<PeopleCluster, List<PeopleFeatureInfo>> cache1 = new Dictionary<PeopleCluster, List<PeopleFeatureInfo>>();
foreach (PeopleCluster people1 in peopleClusterList)
{
List<PeopleFeatureInfo> peopleFeatureList = await tasks1[people1];
cache1.Add(people1, peopleFeatureList);
foreach (PeopleFeatureInfo peopleFeatureInfo1 in peopleFeatureList)
{
DateTime capturedTime = DateTime.ParseExact(peopleFeatureInfo1.captured_time, "yyyyMMddHHmmss", CultureInfo.InvariantCulture);
string strStartTime2 = capturedTime.AddSeconds(-timeThreshold).ToString("yyyyMMddHHmmss");
string strEndTime2 = capturedTime.AddSeconds(timeThreshold).ToString("yyyyMMddHHmmss");
var task2 = ServiceFactory.Get<PeopleFeatureQueryService>().QueryExcludeSelf(strStartTime2, strEndTime2, people1);
string task2Key = $"{strStartTime2}_{strEndTime2}_{string.Join(",", people1.ClusterIds)}";
tasks2.TryAdd(task2Key, task2);
}
}
//读取第一层循环task缓存结果,计算第二层循环task
Dictionary<string, AccompanyInfo> dict = new Dictionary<string, AccompanyInfo>();
foreach (PeopleCluster people1 in peopleClusterList)
{
List<PeopleFeatureInfo> peopleFeatureList = cache1[people1];
foreach (PeopleFeatureInfo peopleFeatureInfo1 in peopleFeatureList)
{
DateTime capturedTime = DateTime.ParseExact(peopleFeatureInfo1.captured_time, "yyyyMMddHHmmss", CultureInfo.InvariantCulture);
string strStartTime2 = capturedTime.AddSeconds(-timeThreshold).ToString("yyyyMMddHHmmss");
string strEndTime2 = capturedTime.AddSeconds(timeThreshold).ToString("yyyyMMddHHmmss");
string task2Key = $"{strStartTime2}_{strEndTime2}_{string.Join(",", people1.ClusterIds)}";
List<PeopleFeatureInfo> peopleFeatureList2 = await tasks2[task2Key];
if (peopleFeatureList2.Count > 0)
{
foreach (PeopleFeatureInfo peopleFeatureInfo2 in peopleFeatureList2)
{
string key = null;
PeopleCluster people2 = null;
string people2ClusterId = null;
if (clusterIdPeopleDict.ContainsKey(peopleFeatureInfo2.cluster_id.ToString()))
{
people2 = clusterIdPeopleDict[peopleFeatureInfo2.cluster_id.ToString()];
key = $"{string.Join(",", people1.ClusterIds)}_{string.Join(",", people2.ClusterIds)}";
}
else
{
people2ClusterId = peopleFeatureInfo2.cluster_id.ToString();
key = $"{string.Join(",", people1.ClusterIds)}_{string.Join(",", people2ClusterId)}";
}
double distance = LngLatUtil.CalcDistance(peopleFeatureInfo1.Longitude, peopleFeatureInfo1.Latitude, peopleFeatureInfo2.Longitude, peopleFeatureInfo2.Latitude);
if (distance > distanceThreshold) continue;
AccompanyInfo accompanyInfo;
if (dict.ContainsKey(key))
{
accompanyInfo = dict[key];
}
else
{
accompanyInfo = new AccompanyInfo();
dict.Add(key, accompanyInfo);
}
accompanyInfo.People1 = people1;
if (people2 != null)
{
accompanyInfo.People2 = people2;
}
else
{
accompanyInfo.ClusterId2 = people2ClusterId;
}
AccompanyItem accompanyItem = new AccompanyItem();
accompanyItem.Info1 = peopleFeatureInfo1;
accompanyItem.Info2 = peopleFeatureInfo2;
accompanyInfo.List.Add(accompanyItem);
accompanyInfo.Count++;
resultList.Add(accompanyInfo);
}
}
}
}
resultList = resultList.FindAll(a => (a.People2 != null && a.Count >= kpCountThreshold) || a.Count >= countThreshold);
//去重
int beforeDistinctCount = resultList.Count;
resultList = resultList.DistinctBy(a =>
{
string str1 = string.Join(",", a.People1.ClusterIds);
string str2 = a.People2 != null ? string.Join(",", a.People2.ClusterIds) : string.Empty;
string str3 = a.ClusterId2 ?? string.Empty;
StringBuilder sb = new StringBuilder();
foreach (AccompanyItem item in a.List)
{
var info2 = item.Info2;
sb.Append($"{info2.camera_id},{info2.captured_time},{info2.cluster_id}");
}
return $"{str1}_{str2}_{str3}_{sb}";
}).ToList();
//抓拍记录排序
foreach (AccompanyInfo item in resultList)
{
item.List.Sort((a, b) => -string.Compare(a.Info1.captured_time, b.Info1.captured_time));
}
sw.Stop();
string msg = $"xxx查询,耗时:{sw.Elapsed.TotalSeconds:0.000} 秒,查询次数:{tasks1.Count + tasks2.Count},去重:{beforeDistinctCount}-->{resultList.Count}";
Console.WriteLine(msg);
LogUtil.Info(msg);
return resultList;
}
上述代码说明
- 为了使异步并行化,双循环要写三遍。第一遍只需写第一层循环,省了第二层。第二遍没有数据处理的那层子循环。第三遍是最全的。
- 和普通的异步相比,第一、二遍双循环是多出来的,第三遍双循环代码结构和普通的异步代码结构是一样的。
- 写的时候,可以先写好普通的异步方法,然后再改造成并行化的异步方法。
你为什么说.NET圈的顶级大佬没有写过?
- 不吹个牛,博客没人看,没人点赞啊?!
- 我倒是希望有大佬写个更好的实践,把我这种写法淘汰掉,因为这是我能想到的最容易控制的写法了。
并行代码,很多人都会写,java、python也能写,但问题是,比较菜的普通业务程序员,如何无脑写这种并行代码?
最差的写法,例如java的CompletableFuture,结合业务代码,写法就很复杂了。真的没法无脑写。
其次的写法,例如:
List<PeopleFeatureInfo>[] listArray = await Task.WhenAll(tasks2.Values);
在双循环体中,怎么拿结果?肯定能写,但又要思考怎么写了不是?
而我的写法,在双循环体中是可以直接拿结果的:
List<PeopleFeatureInfo> list = await tasks2[task2Key];
- 只放C#代码没有说服力,我一个同事python写的很6,他写的挖掘代码很多都是并行,放一段代码:
def get_es_multiprocess(index_list, people_list, core_percent, rev_clusterid_idcard_dict):
'''
多进程读取es数据,转为整个数据帧,按时间排序
:return: 规模较大的数据帧
'''
col_list = ["cluster_id", "camera_id", "captured_time"]
pool = Pool(processes=int(mp.cpu_count() * core_percent))
input_list = [(i, people_list, col_list) for i in index_list]
res = pool.map(get_es, input_list)
if not res:
return None
pool.close()
pool.join()
df_all = pd.DataFrame(columns=col_list+['longitude', 'latitude'])
for df in res:
df_all = pd.concat([df_all, df])
# 这里强制转换为字符串!
df_all['cluster_id_'] = df_all['cluster_id'].apply(lambda x: rev_clusterid_idcard_dict[str(x)])
del df_all['cluster_id']
df_all.rename(columns={'cluster_id_': 'cluster_id'}, inplace=True)
df_all.sort_values(by='captured_time', inplace=True)
print('=' * 100)
print('整个数据(聚类前):')
print(df_all.info())
cluster_id_list = [(i, df) for i, df in df_all.groupby(['cluster_id'])]
cluster_id_list_split = [j for j in func(cluster_id_list, 1000000)]
# todo 缩小数据集,用于调试!
data_all = df_all.iloc[:, :]
return data_all, cluster_id_list_split
上述python代码解析
- 核心代码:
res = pool.map(get_es, input_list)
pool.join()
...省略
其中get_es是查询es的方法,他写的应该不是异步方法,不过这个不是重点
2. res是查询结果,通过并行的方式一把查出来,放到res中,然后把结果再解出来
3. 注意,这只是单循环,想想双层循环怎么写
4. pool.join()是阻塞线程的
5. 同事注释中写的是"多进程",是写错了吗?实际是多线程?还是就是多进程?
6. 当然,python是有async await异步写法的,应该不比C#差,只是同事没有用,可能是因为他用的python版本不够新
未完,待补充
XXX
- 我们开发的低代码平台很牛B,C#:我就是低代码!
- 我们开发的平台很牛B,支持写脚本、自定义脚本,C#:我就是脚本!
- 我们用spark、flink分布式,性能牛B,C#:并行异步性能吊炸天,内存给大些,单机就可以。C#:我的并行异步的性能,能把es干挂,只要不是计算密集型,只要内存够,不用spark、flink。