初探事务
一、背景
拜神
spring事务领头人叫Juergen Hoeller,于尔根·糊了...先混个脸熟哈,他写了几乎全部的spring事务代码。读源码先拜神,掌握他的源码的风格,读起来会通畅很多。最后一节咱们总结下这个大神的代码风格。
事务的定义
事务(Transaction)是数据库区别于文件系统的重要特性之一。目前国际认可的数据库设计原则是ACID特性,用以保证数据库事务的正确执行。Mysql的innodb引擎中的事务就完全符合ACID特性。
spring对于事务的支持,分层概览图如下:
二、事务的ACID特性
(箭头后,翻译自官网介绍:InnoDB and the ACID Model )
- 原子性(Atomicity): 一个事务必须被视为一个不可分割的最小工作单元,整个事务中的所有操作要么全部提交成功,要么全部失败回滚。主要涉及InnoDB事务。相关特性:事务的提交,回滚,信息表。
- 一致性(consistency): 数据库总是从一个一致性的状态转换到另一个一致性的状态。在事务开始前后,数据库的完整性约束没有被破坏。例如违反了唯一性,必须撤销事务,返回初始状态。主要涉及内部InnoDB处理,以保护数据不受崩溃,相关特性:双写缓冲、崩溃恢复。
- 隔离性(isolation): 每个读写事务的对象对其他事务的操作对象能相互分离,即:事务提交前对其他事务是不可见的**,通常内部加锁实现。主要涉及事务,尤其是事务隔离级别,相关特性:隔离级别、innodb锁的底层实现细节。
- 持久性(durability): 一旦事务提交,则其所做的修改会永久保存到数据库。涉及到MySQL软件特性与特定硬件配置的相互影响,相关特性:4个配置项:双写缓冲开关、事务提交刷新log的级别、binlog同步频率、表文件;写缓存、操作系统对于
fsync()的支持、
备份策略等。
三、事务的属性
要保证事务的ACID特性,spring给事务定义了6个属性,对应于声明式事务注解(org.springframework.transaction.annotation.Transactional)@Transactional(key1=,key2=...)
- 事务名称:用户可手动指定事务的名称,当多个事务的时候,可区分使用哪个事务。对应注解中的属性value、transactionManager
- 隔离级别: 为了解决数据库容易出现的问题,分级加锁处理策略。 对应注解中的属性isolation
- 超时时间: 定义一个事务执行过程多久算超时,以便超时后回滚。可以防止长期运行的事务占用资源.对应注解中的属性timeout
- 是否只读:表示这个事务只读取数据但不更新数据, 这样可以帮助数据库引擎优化事务.对应注解中的属性readOnly
- 传播机制: 对事务的传播特性进行定义,共有7种类型。对应注解中的属性propagation
- 回滚机制:定义遇到异常时回滚策略。对应注解中的属性rollbackFor、noRollbackFor、rollbackForClassName、noRollbackForClassName
其中隔离级别和传播机制比较复杂,咱们细细地品一品。
隔离级别
这一块比较复杂,我们从3个角度来看:3种错误现象、mysql的底层技术支持、分级处理策略。这一小节一定要好好看,已经开始涉及核心原理了。
一、.现象(三种问题)
脏读(Drity Read):事务A更新记录但未提交,事务B查询出A未提交记录。
不可重复读(Non-repeatable read): 事务A读取一次,此时事务B对数据进行了更新或删除操作,事务A再次查询数据不一致。
幻读(Phantom Read): 事务A读取一次,此时事务B插入一条数据事务A再次查询,记录多了。
二、 mysql的底层支持(IndoDB事务模型)(一致性非锁定读VS锁定读)
官网飞机票:InnoDB Transaction Model
两种读
在MVCC中,读操作可以分成两类,快照读(Snapshot read)和当前读(current read)。
快照读:普通的select
当前读:
- select * from table where ? lock in share mode; (加S锁)
- select * from table where ? for update; (加X锁)
- insert, update, delete 操作前会先进行一次当前读(加X锁)
其中前两种锁定读,需要用户自己显式使用,最后一种是自动添加的。
X锁:写锁,排它锁(exclusive locks独家排它)
T对R加X锁,T只能读取和修改,其他事务不能对R+任何锁。S锁:读锁,共享锁(share locks)
T对R+S锁,T只能读,不能改,其他事务可以对R+S锁。
1.一致性非锁定读(快照读)
一致性非锁定读(consistent nonlocking read)是指InnoDB存储引擎通过多版本控制(multi versionning)的方式来读取当前执行时间数据库中行的数据,如果读取的行正在执行DELETE或UPDATE操作,这是读取操作不会因此等待行上锁的释放。相反的,InnoDB会去读取行的一个快照数据
上面展示了InnoDB存储引擎一致性的非锁定读。之所以称为非锁定读,因为不需要等待访问的行上X锁的释放。快照数据是指该行之前版本的数据,该实现是通过undo段来完成。而undo用来事务中的回滚数据,因此快照数据本身没有额外的开销,此外,读取快照数据不需要上锁,因为没有事务需要对历史数据进行修改操作。
2.锁定读(当前读)
innoDB对select语句支持两种锁定读:
1)SELECT...FOR UPDATE:对读取的行加排它锁(X锁),其他事务不能对已锁定的行再加任何锁。
2 ) SELECT...LOCK IN SHARE MODE :对读取的行加共享锁(S锁),其他事务可以再加S锁,X锁会阻塞等待。
三、.分级处理策略(四种隔离级别)
官网描述:
InnoDB使用不同的锁定策略支持每个事务隔离级别。对于关键数据的操作(遵从ACID原则),您可以使用强一致性(默认Repeatable Read)。对于不是那么重要的数据操作,可以使用Read Committed/Read Uncommitted。Serializable执行比可重读更严格的规则,用于特殊场景:XA事务,并发性和死锁问题的故障排除。
四种隔离级别:
1.Read Uncommitted(读取未提交内容):可能读取其它事务未提交的数据。-脏读问题(脏读+不可重复读+幻读)
2.Read Committed(读取提交内容):一个事务只能看见已经提交事务所做的改变。(不可重复读+幻读)
select...from : 一致性非锁定读的数据快照(MVCC)是最新版本的,但其他事务可能会有新的commit,所以同一select可能返回不同结果。-不可重复读问题
select...from for update : record lock行级锁.
3.Repeatable Read(可重读):
- select…from :同一事务内多次一致性非锁定读,取第一次读取时建立的快照版本(MVCC),保证了同一事务内部的可重复读.—狭义的幻读问题得到解决。(Db插入了数据,只不过读不到)
- select...from for update (FOR UPDATE or LOCK IN SHARE MODE), UPDATE, 和 DELETE : next-key lock下一键锁.
1)对于具有唯一搜索条件的唯一索引,innoDB只锁定找到的索引记录. (next-key lock 降为record lock)
2)对于其他非索引或者非唯一索引,InnoDB会对扫描的索引范围进行锁定,使用next-key locks,阻塞其他session对间隙的insert操作,-彻底解决广义的幻读问题。(DB没插入数据)
4.Serializable****(可串行化):这是最高的隔离级别,它是在每个读的数据行上加上共享锁(LOCK IN SHARE MODE)。在这个级别,可能导致大量的超时现象和锁竞争,主要用于分布式事务。
如下表:
传播机制
org.springframework.transaction包下有一个事务定义接口TransactionDefinition,定义了7种事务传播机制,很多人对传播机制的曲解从概念开始,所以特地翻译了一下源码注释如下:
1.PROPAGATION_REQUIRED
支持当前事务;如果不存在,创建一个新的。类似于同名的EJB事务属性。这通常是事务定义的默认设置,通常定义事务同步作用域。
2.PROPAGATION_SUPPORTS
支持当前事务;如果不存在事务,则以非事务方式执行。类似于同名的EJB事务属性。
注意:
对于具有事务同步的事务管理器,PROPAGATION_SUPPORTS与没有事务稍有不同,因为它可能在事务范围内定义了同步。因此,相同的资源(JDBC的Connection、Hibernate的Session等)将在整个指定范围内共享。注意,确切的行为取决于事务管理器的实际同步配置!
小心使用PROPAGATION_SUPPORTS!特别是,不要依赖PROPAGATION_REQUIRED或PROPAGATION_REQUIRES_NEW,在PROPAGATION_SUPPORTS范围内(这可能导致运行时的同步冲突)。如果这种嵌套不可避免,请确保适当地配置事务管理器(通常切换到“实际事务上的同步”)。
3.PROPAGATION_MANDATORY
支持当前事务;如果当前事务不存在,抛出异常。类似于同名的EJB事务属性。
注意:
PROPAGATION_MANDATORY范围内的事务同步总是由周围的事务驱动。
4.PROPAGATION_REQUIRES_NEW
创建一个新事务,如果存在当前事务,则挂起当前事务。类似于同名的EJB事务属性。
注意:实际事务挂起不会在所有事务管理器上开箱即用。这一点特别适用于JtaTransactionManager,它需要TransactionManager的支持。
PROPAGATION_REQUIRES_NEW范围总是定义自己的事务同步。现有同步将被挂起并适当地恢复。
5.PROPAGATION_NOT_SUPPORTED
不支持当前事务,存在事务挂起当前事务;始终以非事务方式执行。类似于同名的EJB事务属性。
注意:实际事务挂起不会在所有事务管理器上开箱即用。这一点特别适用于JtaTransactionManager,它需要TransactionManager的支持。
事务同步在PROPAGATION_NOT_SUPPORTED范围内是不可用的。现有同步将被挂起并适当地恢复。
6.PROPAGATION_NEVER
不支持当前事务;如果当前事务存在,抛出异常。类似于同名的EJB事务属性。
注意:事务同步在PROPAGATION_NEVER范围内不可用。
7.PROPAGATION_NESTED
如果当前事务存在,则在嵌套事务中执行,如果当前没有事务,类似PROPAGATION_REQUIRED(创建一个新的)。EJB中没有类似的功能。
注意:实际创建嵌套事务只对特定的事务管理器有效。开箱即用,这只适用于 DataSourceTransactionManager(JDBC 3.0驱动)。一些JTA提供者也可能支持嵌套事务。
注意:JtaTransactionManager的类注释上说:Transaction suspension (REQUIRES_NEW, NOT_SUPPORTED) is just available with a JTA TransactionManager being registered." 这是片面的,只是说JTA TransactionManager支持挂起,并没有说DataSourceTransactionManager不支持。经过第四节实测,发现完全是支持的。网上很多说REQUIRES_NEW、NOT_SUPPORTED必须要JTA TransactionManager才行的完全是错误的说法。
总结
不同传播机制 | 事务名称 | 描述 | 事务管理器要求 | 是否支持事务 | 是否开启新事务 | 回滚规则 |
---|---|---|---|---|---|---|
REQUIRED | 要求 | 存在加入,不存在创建新 | 无 | ✅ | 不一定 | 存在一个事务:1.外部有事务加入,异常回滚;2.外部没事务创建新事务,异常回滚 |
SUPPORTS | 支持 | 存在加入,不存在非事务 | 无 | ✅ | ❎ | 最多只存在一个事务: 1.外部有事务加入,异常回滚;2.外部没事务,内部非事务,异常不回滚 |
MANDATORY | 强制 | 存在加入,不存在抛异常 | 无 | ✅ | ❎ | 最多只存在一个事务: 1.外部存在事务加入,异常回滚;2.外部不存在事务,异常无法回滚 |
REQUIRES_NEW | 要求新 | 存在挂起创建新,不存在创建新 | 无 | ✅ | ✅ | 可能存在1-2个事务:1.外部存在事务挂起,创建新,异常回滚自己的事务 2.外部不存在事务,创建新, 异常只回滚新事务 |
NOT_SUPPORTED | 不支持 | 存在挂起,不存在非事务 | 无 | ❎ | ❎ | 最多只存在一个事务:1. 外部有事务挂起,外部异常回滚;内部非事务,异常不回滚2.外部无事务,内部非事务,异常不回滚 |
NEVER | 坚决不 | 存在抛异常 | 无 | ❎ | ❎ | 最多只存在一个事务:1.外部有事务,外部异常回滚;内部非事务不回滚 2.外部非事务,内部非事务,异常不回滚 |
NESTED | 嵌套 | 存在嵌套,不存在创建新 | DataSourceTransactionManager | ✅ | ❎(同一个物理事务,保存点实现嵌套) | 存在一个事务:1. 外部有事务,嵌套事务创建保存点,外部异常回滚全部事务;内部嵌套事务异常回滚到保存点;2.外部不存在事务,内部创建新事务,内部异常回滚 |
简单样例
一、引子
在Spring中,事务有两种实现方式:
- 编程式事务管理: 编程式事务管理使用底层源码可实现更细粒度的事务控制。spring推荐使用TransactionTemplate,典型的模板模式。
- 申明式事务管理: 添加@Transactional注解,并定义传播机制+回滚策略。基于Spring AOP实现,本质是对方法前后进行拦截,然后在目标方法开始之前创建或者加入一个事务,在执行完目标方法之后根据执行情况提交或者回滚事务。
二、简单样例
需求:
创建用户时,新建一个用户余额表。如果用户余额创建失败抛出异常,那么用户表也回滚,即要保证“新增用户+新增用户余额”一起成功 或 回滚。
申明式事务管理
只需要在service.impl层,业务方法上添加@Transactional注解,定义事务的传播机制为REQUIRED(不写这个参数,默认就是REQUIRED),遇到Exception异常就一起回滚。
REQUIRED传播机制下:存在加入事务,不存在创建新事务。保证了当前方法中的所有数据库操作都在一个物理事务中,当遇到异常时会整个业务方法一起回滚。
/**
* 创建用户并创建账户余额
*
* @param name
* @param balance
* @return
*/
@Transactional(propagation= Propagation.REQUIRED, rollbackFor = Exception.class)
@Override
public void addUserBalanceAndUser(String name, BigDecimal balance) {
log.info("[addUserBalanceAndUser] begin!!!");
//1.新增用户
userService.addUser(name);
//2.新增用户余额
UserBalance userBalance = new UserBalance();
userBalance.setName(name);
userBalance.setBalance(new BigDecimal(1000));
this.addUserBalance(userBalance);
log.info("[addUserBalanceAndUser] end!!!");
}
编程式事务管理
/**
* 创建用户并创建账户余额(手动事务,不带结果)
*
* @param name
* @param balance
* @return
*/
@Override
public void addUserBalanceAndUserWithinTT(String name, BigDecimal balance) {
//实现一个没有返回值的事务回调
transactionTemplate.execute(new TransactionCallbackWithoutResult() {
@Override
protected void doInTransactionWithoutResult(TransactionStatus status) {
try {
log.info("[addUserBalanceAndUser] begin!!!");
//1.新增用户
userService.addUser(name);
//2.新增用户余额
UserBalance userBalance = new UserBalance();
userBalance.setName(name);
userBalance.setBalance(new BigDecimal(1000));
userBalanceRepository.insert(userBalance);
log.info("[addUserBalanceAndUser] end!!!");
//注意:这里catch住异常后,设置setRollbackOnly,否则事务不会滚。当然如果不需要自行处理异常,就不要catch了
} catch (Exception e) {
// 异常回滚
status.setRollbackOnly();
log.error("异常回滚!,e={}",e);
}
}
});
}
注意:
1.可以不用try catch,transactionTemplate.execute自己会捕捉异常并回滚。--》推荐
2.如果有业务异常需要特殊处理,记得:status.setRollbackOnly(); 标识为回滚。--》特殊情况才使用
源码详解
一、引子
在Spring中,事务有两种实现方式:
- 编程式事务管理: 编程式事务管理使用TransactionTemplate可实现更细粒度的事务控制。
- 申明式事务管理: 基于Spring AOP实现。其本质是对方法前后进行拦截,然后在目标方法开始之前创建或者加入一个事务,在执行完目标方法之后根据执行情况提交或者回滚事务。
申明式事务管理不需要入侵代码,通过@Transactional就可以进行事务操作,更快捷而且简单(尤其是配合spring boot自动配置,可以说是精简至极!),且大部分业务都可以满足,推荐使用。
其实不管是编程式事务还是申明式事务,最终调用的底层核心代码是一致的。本章分别从编程式、申明式入手,再进入核心源码贯穿式讲解。
二、事务源码
编程式事务TransactionTemplate
编程式事务,Spring已经给我们提供好了模板类TransactionTemplate,可以很方便的使用,如下图:
TransactionTemplate全路径名是:org.springframework.transaction.support.TransactionTemplate。看包名也知道了这是spring对事务的模板类。(spring动不动就是各种Template...),看下类图先:
一看,哟西,实现了TransactionOperations、InitializingBean这2个接口(熟悉spring源码的知道这个InitializingBean又是老套路),我们来看下接口源码如下:
public interface TransactionOperations {
/**
* Execute the action specified by the given callback object within a transaction.
* <p>Allows for returning a result object created within the transaction, that is,
* a domain object or a collection of domain objects. A RuntimeException thrown
* by the callback is treated as a fatal exception that enforces a rollback.
* Such an exception gets propagated to the caller of the template.
* @param action the callback object that specifies the transactional action
* @return a result object returned by the callback, or {@code null} if none
* @throws TransactionException in case of initialization, rollback, or system errors
* @throws RuntimeException if thrown by the TransactionCallback
*/
<T> T execute(TransactionCallback<T> action) throws TransactionException;
}
public interface InitializingBean {
/**
* Invoked by a BeanFactory after it has set all bean properties supplied
* (and satisfied BeanFactoryAware and ApplicationContextAware).
* <p>This method allows the bean instance to perform initialization only
* possible when all bean properties have been set and to throw an
* exception in the event of misconfiguration.
* @throws Exception in the event of misconfiguration (such
* as failure to set an essential property) or if initialization fails.
*/
void afterPropertiesSet() throws Exception;
}
如上图,TransactionOperations这个接口用来执行事务的回调方法,InitializingBean这个是典型的spring bean初始化流程中的预留接口,专用用来在bean属性加载完毕时执行的方法。
回到正题,TransactionTemplate的2个接口的impl方法做了什么?
@Override
public void afterPropertiesSet() {
if (this.transactionManager == null) {
throw new IllegalArgumentException("Property 'transactionManager' is required");
}
}
@Override
public <T> T execute(TransactionCallback<T> action) throws TransactionException {
// 内部封装好的事务管理器
if (this.transactionManager instanceof CallbackPreferringPlatformTransactionManager) {
return ((CallbackPreferringPlatformTransactionManager) this.transactionManager).execute(this, action);
}// 需要手动获取事务,执行方法,提交事务的管理器
else {// 1.获取事务状态
TransactionStatus status = this.transactionManager.getTransaction(this);
T result;
try {// 2.执行业务逻辑
result = action.doInTransaction(status);
}
catch (RuntimeException ex) {
// 应用运行时异常 -> 回滚
rollbackOnException(status, ex);
throw ex;
}
catch (Error err) {
// Error异常 -> 回滚
rollbackOnException(status, err);
throw err;
}
catch (Throwable ex) {
// 未知异常 -> 回滚
rollbackOnException(status, ex);
throw new UndeclaredThrowableException(ex, "TransactionCallback threw undeclared checked exception");
}// 3.事务提交
this.transactionManager.commit(status);
return result;
}
}
如上图所示,实际上afterPropertiesSet只是校验了事务管理器不为空,execute()才是核心方法,execute主要步骤:
1.getTransaction()获取事务,源码见3.3.1
2.doInTransaction()执行业务逻辑,这里就是用户自定义的业务代码。如果是没有返回值的,就是doInTransactionWithoutResult()。
3.commit()事务提交:调用AbstractPlatformTransactionManager的commit,rollbackOnException()异常回滚:调用AbstractPlatformTransactionManager的rollback(),事务提交回滚
申明式事务@Transactional
1.AOP相关概念
申明式事务使用的是spring AOP,即面向切面编程。(什么❓你不知道什么是AOP...一句话概括就是:把业务代码中重复代码做成一个切面,提取出来,并定义哪些方法需要执行这个切面。其它的自行百度吧...)AOP核心概念如下:
- 通知(Advice):定义了切面(各处业务代码中都需要的逻辑提炼成的一个切面)做什么what+when何时使用。例如:前置通知Before、后置通知After、返回通知After-returning、异常通知After-throwing、环绕通知Around.
- 连接点(Joint point):程序执行过程中能够插入切面的点,一般有多个。比如调用方式时、抛出异常时。
- 切点(Pointcut):切点定义了连接点,切点包含多个连接点,即where哪里使用通知.通常指定类+方法 或者 正则表达式来匹配 类和方法名称。
- 切面(Aspect):切面=通知+切点,即when+where+what何时何地做什么。
- 引入(Introduction):允许我们向现有的类添加新方法或属性。
- 织入(Weaving):织入是把切面应用到目标对象并创建新的代理对象的过程。
2.申明式事务
申明式事务整体调用过程,可以抽出2条线:
1.使用代理模式,生成代理增强类。
2.根据代理事务管理配置类,配置事务的织入,在业务方法前后进行环绕增强,增加一些事务的相关操作。例如获取事务属性、提交事务、回滚事务。
申明式事务使用@Transactional这种注解的方式,那么我们就从springboot 容器启动时的自动配置载入开始看。在/META-INF/spring.factories中配置文件中查找,如下图:
载入2个关于事务的自动配置类:
org.springframework.boot.autoconfigure.transaction.TransactionAutoConfiguration,
org.springframework.boot.autoconfigure.transaction.jta.JtaAutoConfiguration,
jta咱们就不看了,看一下TransactionAutoConfiguration这个自动配置类:
@Configuration
@ConditionalOnClass(PlatformTransactionManager.class)
@AutoConfigureAfter({ JtaAutoConfiguration.class, HibernateJpaAutoConfiguration.class,
DataSourceTransactionManagerAutoConfiguration.class,
Neo4jDataAutoConfiguration.class })
@EnableConfigurationProperties(TransactionProperties.class)
public class TransactionAutoConfiguration {
@Bean
@ConditionalOnMissingBean
public TransactionManagerCustomizers platformTransactionManagerCustomizers(
ObjectProvider<List<PlatformTransactionManagerCustomizer<?>>> customizers) {
return new TransactionManagerCustomizers(customizers.getIfAvailable());
}
@Configuration
@ConditionalOnSingleCandidate(PlatformTransactionManager.class)
public static class TransactionTemplateConfiguration {
private final PlatformTransactionManager transactionManager;
public TransactionTemplateConfiguration(
PlatformTransactionManager transactionManager) {
this.transactionManager = transactionManager;
}
@Bean
@ConditionalOnMissingBean
public TransactionTemplate transactionTemplate() {
return new TransactionTemplate(this.transactionManager);
}
}
@Configuration
@ConditionalOnBean(PlatformTransactionManager.class)
@ConditionalOnMissingBean(AbstractTransactionManagementConfiguration.class)
public static class EnableTransactionManagementConfiguration {
@Configuration
@EnableTransactionManagement(proxyTargetClass = false)
@ConditionalOnProperty(prefix = "spring.aop", name = "proxy-target-class", havingValue = "false", matchIfMissing = false)
public static class JdkDynamicAutoProxyConfiguration {
}
@Configuration
@EnableTransactionManagement(proxyTargetClass = true)
@ConditionalOnProperty(prefix = "spring.aop", name = "proxy-target-class", havingValue = "true", matchIfMissing = true)
public static class CglibAutoProxyConfiguration {
}
}
}
TransactionAutoConfiguration这个类主要看:
2个类注解
// 即类路径下包含PlatformTransactionManager这个类时这个自动配置生效,这个类是spring事务的核心包,肯定引入了。
@ConditionalOnClass(PlatformTransactionManager.class)
// 这个配置在括号中的4个配置类后才生效。
@AutoConfigureAfter({ JtaAutoConfiguration.class, HibernateJpaAutoConfiguration.class, DataSourceTransactionManagerAutoConfiguration.class, Neo4jDataAutoConfiguration.class }),
2个内部类
TransactionTemplateConfiguration事务模板配置类:
// 当能够唯一确定一个PlatformTransactionManager bean时才生效。
@ConditionalOnSingleCandidate(PlatformTransactionManager.class)
// 如果没有定义TransactionTemplate bean生成一个。
@ConditionalOnMissingBean
EnableTransactionManagementConfiguration开启事务管理器配置类:
// 当存在PlatformTransactionManager bean时生效。
@ConditionalOnBean(PlatformTransactionManager.class)
// 当没有自定义抽象事务管理器配置类时才生效。(即用户自定义抽象事务管理器配置类会优先,如果没有,就用这个默认事务管理器配置类)
@ConditionalOnMissingBean(AbstractTransactionManagementConfiguration.class)
EnableTransactionManagementConfiguration支持2种代理方式:
- 1.JdkDynamicAutoProxyConfiguration:
// 即proxyTargetClass = false表示是JDK动态代理支持的是:面向接口代理。
@EnableTransactionManagement(proxyTargetClass = false)
// 即spring.aop.proxy-target-class=false时生效,且没有这个配置不生效。
@ConditionalOnProperty(prefix = "spring.aop", name = "proxy-target-class", havingValue = "false", matchIfMissing = false)
- 2.CglibAutoProxyConfiguration:
// 即proxyTargetClass = true标识Cglib代理支持的是子类继承代理。
@EnableTransactionManagement(proxyTargetClass = true)
// 即spring.aop.proxy-target-class=true时生效,且没有这个配置默认生效。
@ConditionalOnProperty(prefix = "spring.aop", name = "proxy-target-class", havingValue = "true", matchIfMissing = true)
注意了,默认没有配置,走的Cglib代理。说明@Transactional注解支持直接加在类上。
好吧,看了这么多配置类,终于到了@EnableTransactionManagement这个注解了。
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Import(TransactionManagementConfigurationSelector.class)
public @interface EnableTransactionManagement {
//proxyTargetClass = false表示是JDK动态代理支持接口代理。true表示是Cglib代理支持子类继承代理。
boolean proxyTargetClass() default false;
//事务通知模式(切面织入方式),默认代理模式(同一个类中方法互相调用拦截器不会生效),可以选择增强型AspectJ
AdviceMode mode() default AdviceMode.PROXY;
//连接点上有多个通知时,排序,默认最低。值越大优先级越低。
int order() default Ordered.LOWEST_PRECEDENCE;
}
重点看类注解@Import(TransactionManagementConfigurationSelector.class)
TransactionManagementConfigurationSelector类图如下:
如上图所示,TransactionManagementConfigurationSelector继承自AdviceModeImportSelector实现了ImportSelector接口。
public class TransactionManagementConfigurationSelector extends AdviceModeImportSelector<EnableTransactionManagement> {
/**
* {@inheritDoc}
* @return {@link ProxyTransactionManagementConfiguration} or
* {@code AspectJTransactionManagementConfiguration} for {@code PROXY} and
* {@code ASPECTJ} values of {@link EnableTransactionManagement#mode()}, respectively
*/
@Override
protected String[] selectImports(AdviceMode adviceMode) {
switch (adviceMode) {
case PROXY:
return new String[] {AutoProxyRegistrar.class.getName(), ProxyTransactionManagementConfiguration.class.getName()};
case ASPECTJ:
return new String[] {TransactionManagementConfigUtils.TRANSACTION_ASPECT_CONFIGURATION_CLASS_NAME};
default:
return null;
}
}
}
如上图,最终会执行selectImports方法导入需要加载的类,我们只看proxy模式下,载入了AutoProxyRegistrar、ProxyTransactionManagementConfiguration2个类。
-
AutoProxyRegistrar:
`给容器中注册一个 InfrastructureAdvisorAutoProxyCreator 组件;利用后置处理器机制在对象创建以后,包装对象,返回一个代理对象(增强器),代理对象执行方法利用拦截器链进行调用;`
-
ProxyTransactionManagementConfiguration:就是一个配置类,定义了事务增强器。
AutoProxyRegistrar
先看AutoProxyRegistrar实现了ImportBeanDefinitionRegistrar接口,复写registerBeanDefinitions方法,源码如下:
public void registerBeanDefinitions(AnnotationMetadata importingClassMetadata, BeanDefinitionRegistry registry) {
boolean candidateFound = false;
Set<String> annoTypes = importingClassMetadata.getAnnotationTypes();
for (String annoType : annoTypes) {
AnnotationAttributes candidate = AnnotationConfigUtils.attributesFor(importingClassMetadata, annoType);
if (candidate == null) {
continue;
}
Object mode = candidate.get("mode");
Object proxyTargetClass = candidate.get("proxyTargetClass");
if (mode != null && proxyTargetClass != null && AdviceMode.class == mode.getClass() &&
Boolean.class == proxyTargetClass.getClass()) {
candidateFound = true;
if (mode == AdviceMode.PROXY) {//代理模式
AopConfigUtils.registerAutoProxyCreatorIfNecessary(registry);
if ((Boolean) proxyTargetClass) {//如果是CGLOB子类代理模式
AopConfigUtils.forceAutoProxyCreatorToUseClassProxying(registry);
return;
}
}
}
}
if (!candidateFound) {
String name = getClass().getSimpleName();
logger.warn(String.format("%s was imported but no annotations were found " +
"having both 'mode' and 'proxyTargetClass' attributes of type " +
"AdviceMode and boolean respectively. This means that auto proxy " +
"creator registration and configuration may not have occurred as " +
"intended, and components may not be proxied as expected. Check to " +
"ensure that %s has been @Import'ed on the same class where these " +
"annotations are declared; otherwise remove the import of %s " +
"altogether.", name, name, name));
}
}
代理模式:AopConfigUtils.registerAutoProxyCreatorIfNecessary(registry);
最终调用的是:registerOrEscalateApcAsRequired(InfrastructureAdvisorAutoProxyCreator.class, registry, source);基础构建增强自动代理构造器
private static BeanDefinition registerOrEscalateApcAsRequired(Class<?> cls, BeanDefinitionRegistry registry, Object source) {
Assert.notNull(registry, "BeanDefinitionRegistry must not be null"); //如果当前注册器包含internalAutoProxyCreator
if (registry.containsBeanDefinition(AUTO_PROXY_CREATOR_BEAN_NAME)) {//org.springframework.aop.config.internalAutoProxyCreator内部自动代理构造器
BeanDefinition apcDefinition = registry.getBeanDefinition(AUTO_PROXY_CREATOR_BEAN_NAME);
if (!cls.getName().equals(apcDefinition.getBeanClassName())) {//如果当前类不是internalAutoProxyCreator
int currentPriority = findPriorityForClass(apcDefinition.getBeanClassName());
int requiredPriority = findPriorityForClass(cls);
if (currentPriority < requiredPriority) {//如果下标大于已存在的内部自动代理构造器,index越小,优先级越高,InfrastructureAdvisorAutoProxyCreator index=0,requiredPriority最小,不进入
apcDefinition.setBeanClassName(cls.getName());
}
}
return null;//直接返回
}//如果当前注册器不包含internalAutoProxyCreator,则把当前类作为根定义
RootBeanDefinition beanDefinition = new RootBeanDefinition(cls);
beanDefinition.setSource(source);
beanDefinition.getPropertyValues().add("order", Ordered.HIGHEST_PRECEDENCE);//优先级最高
beanDefinition.setRole(BeanDefinition.ROLE_INFRASTRUCTURE);
registry.registerBeanDefinition(AUTO_PROXY_CREATOR_BEAN_NAME, beanDefinition);
return beanDefinition;
}
如上图,APC_PRIORITY_LIST列表如下图:
/**
* Stores the auto proxy creator classes in escalation order.
*/
private static final List<Class<?>> APC_PRIORITY_LIST = new ArrayList<Class<?>>();
/**
* 优先级上升list
*/
static {
APC_PRIORITY_LIST.add(InfrastructureAdvisorAutoProxyCreator.class);
APC_PRIORITY_LIST.add(AspectJAwareAdvisorAutoProxyCreator.class);
APC_PRIORITY_LIST.add(AnnotationAwareAspectJAutoProxyCreator.class);
}
如上图,由于InfrastructureAdvisorAutoProxyCreator这个类在list中第一个index=0,requiredPriority最小,不进入,所以没有重置beanClassName,啥都没做,返回null.
那么增强代理类何时生成呢?
InfrastructureAdvisorAutoProxyCreator类图如下:
如上图所示,看2个核心方法:InstantiationAwareBeanPostProcessor接口的postProcessBeforeInstantiation实例化前+BeanPostProcessor接口的postProcessAfterInitialization初始化后。
1 @Override
2 public Object postProcessBeforeInstantiation(Class<?> beanClass, String beanName) throws BeansException {
3 Object cacheKey = getCacheKey(beanClass, beanName);
4
5 if (beanName == null || !this.targetSourcedBeans.contains(beanName)) {
6 if (this.advisedBeans.containsKey(cacheKey)) {//如果已经存在直接返回
7 return null;
8 }//是否基础构件(基础构建不需要代理):Advice、Pointcut、Advisor、AopInfrastructureBean这四类都算基础构建
9 if (isInfrastructureClass(beanClass) || shouldSkip(beanClass, beanName)) {
10 this.advisedBeans.put(cacheKey, Boolean.FALSE);//添加进advisedBeans ConcurrentHashMap<k=Object,v=Boolean>标记是否需要增强实现,这里基础构建bean不需要代理,都置为false,供后面postProcessAfterInitialization实例化后使用。
11 return null;
12 }
13 }
14
15 // TargetSource是spring aop预留给我们用户自定义实例化的接口,如果存在TargetSource就不会默认实例化,而是按照用户自定义的方式实例化,咱们没有定义,不进入
18 if (beanName != null) {
19 TargetSource targetSource = getCustomTargetSource(beanClass, beanName);
20 if (targetSource != null) {
21 this.targetSourcedBeans.add(beanName);
22 Object[] specificInterceptors = getAdvicesAndAdvisorsForBean(beanClass, beanName, targetSource);
23 Object proxy = createProxy(beanClass, beanName, specificInterceptors, targetSource);
24 this.proxyTypes.put(cacheKey, proxy.getClass());
25 return proxy;
26 }
27 }
28
29 return null;
30 }
通过追踪,由于InfrastructureAdvisorAutoProxyCreator是基础构建类,
advisedBeans.put(cacheKey, Boolean.FALSE)
添加进advisedBeans ConcurrentHashMap<k=Object,v=Boolean>标记是否需要增强实现,这里基础构建bean不需要代理,都置为false,供后面postProcessAfterInitialization实例化后使用。
我们再看postProcessAfterInitialization源码如下:
@Override
public Object postProcessAfterInitialization(Object bean, String beanName) throws BeansException {
if (bean != null) {
Object cacheKey = getCacheKey(bean.getClass(), beanName);
if (!this.earlyProxyReferences.contains(cacheKey)) {
return wrapIfNecessary(bean, beanName, cacheKey);
}
}
return bean;
}
protected Object wrapIfNecessary(Object bean, String beanName, Object cacheKey) { // 如果是用户自定义获取实例,不需要增强处理,直接返回
if (beanName != null && this.targetSourcedBeans.contains(beanName)) {
return bean;
}// 查询map缓存,标记过false,不需要增强直接返回
if (Boolean.FALSE.equals(this.advisedBeans.get(cacheKey))) {
return bean;
}// 判断一遍springAOP基础构建类,标记过false,不需要增强直接返回
if (isInfrastructureClass(bean.getClass()) || shouldSkip(bean.getClass(), beanName)) {
this.advisedBeans.put(cacheKey, Boolean.FALSE);
return bean;
}
// 获取增强List<Advisor> advisors
Object[] specificInterceptors = getAdvicesAndAdvisorsForBean(bean.getClass(), beanName, null); // 如果存在增强
if (specificInterceptors != DO_NOT_PROXY) {
this.advisedBeans.put(cacheKey, Boolean.TRUE);// 标记增强为TRUE,表示需要增强实现 // 生成增强代理类
Object proxy = createProxy(
bean.getClass(), beanName, specificInterceptors, new SingletonTargetSource(bean));
this.proxyTypes.put(cacheKey, proxy.getClass());
return proxy;
}
// 如果不存在增强,标记false,作为缓存,再次进入提高效率,第16行利用缓存先校验
this.advisedBeans.put(cacheKey, Boolean.FALSE);
return bean;
}
最终我们生成的是CGLIB代理类.到此为止我们分析完了代理类的构造过程。
ProxyTransactionManagementConfiguration
下面来看ProxyTransactionManagementConfiguration:
@Configuration
public class ProxyTransactionManagementConfiguration extends AbstractTransactionManagementConfiguration {
@Bean(name = TransactionManagementConfigUtils.TRANSACTION_ADVISOR_BEAN_NAME)
@Role(BeanDefinition.ROLE_INFRASTRUCTURE)//定义事务增强器
public BeanFactoryTransactionAttributeSourceAdvisor transactionAdvisor() {
BeanFactoryTransactionAttributeSourceAdvisor j = new BeanFactoryTransactionAttributeSourceAdvisor();
advisor.setTransactionAttributeSource(transactionAttributeSource());
advisor.setAdvice(transactionInterceptor());
advisor.setOrder(this.enableTx.<Integer>getNumber("order"));
return advisor;
}
@Bean
@Role(BeanDefinition.ROLE_INFRASTRUCTURE)//定义基于注解的事务属性资源
public TransactionAttributeSource transactionAttributeSource() {
return new AnnotationTransactionAttributeSource();
}
@Bean
@Role(BeanDefinition.ROLE_INFRASTRUCTURE)//定义事务拦截器
public TransactionInterceptor transactionInterceptor() {
TransactionInterceptor interceptor = new TransactionInterceptor();
interceptor.setTransactionAttributeSource(transactionAttributeSource());
if (this.txManager != null) {
interceptor.setTransactionManager(this.txManager);
}
return interceptor;
}
}
核心方法:transactionAdvisor()事务织入
定义了一个advisor,设置事务属性、设置事务拦截器TransactionInterceptor、设置顺序。核心就是事务拦截器TransactionInterceptor。
TransactionInterceptor使用通用的spring事务基础架构实现“声明式事务”,继承自TransactionAspectSupport类(该类包含与Spring的底层事务API的集成),实现了MethodInterceptor接口。spring类图如下:
事务拦截器的拦截功能就是依靠实现了MethodInterceptor接口,熟悉spring的同学肯定很熟悉MethodInterceptor了,这个是spring的方法拦截器,主要看invoke方法:
@Override
public Object invoke(final MethodInvocation invocation) throws Throwable {
// Work out the target class: may be {@code null}.
// The TransactionAttributeSource should be passed the target class
// as well as the method, which may be from an interface.
Class<?> targetClass = (invocation.getThis() != null ? AopUtils.getTargetClass(invocation.getThis()) : null);
// 调用TransactionAspectSupport的 invokeWithinTransaction方法
return invokeWithinTransaction(invocation.getMethod(), targetClass, new InvocationCallback() {
@Override
public Object proceedWithInvocation() throws Throwable {
return invocation.proceed();
}
});
}
如上图TransactionInterceptor复写MethodInterceptor接口的invoke方法,并在invoke方法中调用了父类TransactionAspectSupport的invokeWithinTransaction()方法,源码如下:
protected Object invokeWithinTransaction(Method method, Class<?> targetClass, final InvocationCallback invocation)
throws Throwable {
// 如果transaction attribute为空,该方法就是非事务(非编程式事务)
final TransactionAttribute txAttr = getTransactionAttributeSource().getTransactionAttribute(method, targetClass);
final PlatformTransactionManager tm = determineTransactionManager(txAttr);
final String joinpointIdentification = methodIdentification(method, targetClass, txAttr);
// 标准声明式事务:如果事务属性为空 或者 非回调偏向的事务管理器
if (txAttr == null || !(tm instanceof CallbackPreferringPlatformTransactionManager)) {
// Standard transaction demarcation with getTransaction and commit/rollback calls.
TransactionInfo txInfo = createTransactionIfNecessary(tm, txAttr, joinpointIdentification);
Object retVal = null;
try {
// 这里就是一个环绕增强,在这个proceed前后可以自己定义增强实现
// 方法执行
retVal = invocation.proceedWithInvocation();
}
catch (Throwable ex) {
// 根据事务定义的,该异常需要回滚就回滚,否则提交事务
completeTransactionAfterThrowing(txInfo, ex);
throw ex;
}
finally {//清空当前事务信息,重置为老的
cleanupTransactionInfo(txInfo);
}//返回结果之前提交事务
commitTransactionAfterReturning(txInfo);
return retVal;
}
// 编程式事务:(回调偏向)
else {
final ThrowableHolder throwableHolder = new ThrowableHolder();
// It's a CallbackPreferringPlatformTransactionManager: pass a TransactionCallback in.
try {
Object result = ((CallbackPreferringPlatformTransactionManager) tm).execute(txAttr,
new TransactionCallback<Object>() {
@Override
public Object doInTransaction(TransactionStatus status) {
TransactionInfo txInfo = prepareTransactionInfo(tm, txAttr, joinpointIdentification, status);
try {
return invocation.proceedWithInvocation();
}
catch (Throwable ex) {// 如果该异常需要回滚
if (txAttr.rollbackOn(ex)) {
// 如果是运行时异常返回
if (ex instanceof RuntimeException) {
throw (RuntimeException) ex;
}// 如果是其它异常都抛ThrowableHolderException
else {
throw new ThrowableHolderException(ex);
}
}// 如果不需要回滚
else {
// 定义异常,最终就直接提交事务了
throwableHolder.throwable = ex;
return null;
}
}
finally {//清空当前事务信息,重置为老的
cleanupTransactionInfo(txInfo);
}
}
});
// 上抛异常
if (throwableHolder.throwable != null) {
throw throwableHolder.throwable;
}
return result;
}
catch (ThrowableHolderException ex) {
throw ex.getCause();
}
catch (TransactionSystemException ex2) {
if (throwableHolder.throwable != null) {
logger.error("Application exception overridden by commit exception", throwableHolder.throwable);
ex2.initApplicationException(throwableHolder.throwable);
}
throw ex2;
}
catch (Throwable ex2) {
if (throwableHolder.throwable != null) {
logger.error("Application exception overridden by commit exception", throwableHolder.throwable);
}
throw ex2;
}
}
}
如上图,我们主要看第一个分支,申明式事务,核心流程如下:
1.createTransactionIfNecessary():如果有必要,创建事务
2.InvocationCallback的proceedWithInvocation():InvocationCallback是父类的内部回调接口,子类中实现该接口供父类调用,子类TransactionInterceptor中invocation.proceed()。回调方法执行
3.异常回滚completeTransactionAfterThrowing()
1.createTransactionIfNecessary():
protected TransactionInfo createTransactionIfNecessary(
PlatformTransactionManager tm, TransactionAttribute txAttr, final String joinpointIdentification) {
// 如果还没有定义名字,把连接点的ID定义成事务的名称
if (txAttr != null && txAttr.getName() == null) {
txAttr = new DelegatingTransactionAttribute(txAttr) {
@Override
public String getName() {
return joinpointIdentification;
}
};
}
TransactionStatus status = null;
if (txAttr != null) {
if (tm != null) {
status = tm.getTransaction(txAttr);
}
else {
if (logger.isDebugEnabled()) {
logger.debug("Skipping transactional joinpoint [" + joinpointIdentification +
"] because no transaction manager has been configured");
}
}
}
return prepareTransactionInfo(tm, txAttr, joinpointIdentification, status);
}
核心就是:
1)getTransaction(),根据事务属性获取事务TransactionStatus,大道归一,都是调用PlatformTransactionManager.getTransaction()
2)prepareTransactionInfo(),构造一个TransactionInfo事务信息对象,绑定当前线程:ThreadLocal
2.invocation.proceed()回调业务方法:
最终实现类是ReflectiveMethodInvocation,类图如下:
如上图,ReflectiveMethodInvocation类实现了ProxyMethodInvocation接口,但是ProxyMethodInvocation继承了3层接口...ProxyMethodInvocation->MethodInvocation->Invocation->Joinpoint
Joinpoint:连接点接口,定义了执行接口:Object proceed() throws Throwable; 执行当前连接点,并跳到拦截器链上的下一个拦截器。
Invocation:调用接口,继承自Joinpoint,定义了获取参数接口: Object[] getArguments();是一个带参数的、可被拦截器拦截的连接点。
MethodInvocation:方法调用接口,继承自Invocation,定义了获取方法接口:Method getMethod(); 是一个带参数的可被拦截的连接点方法。
ProxyMethodInvocation:代理方法调用接口,继承自MethodInvocation,定义了获取代理对象接口:Object getProxy();是一个由代理类执行的方法调用连接点方法。
ReflectiveMethodInvocation:实现了ProxyMethodInvocation接口,自然就实现了父类接口的的所有接口。获取代理类,获取方法,获取参数,用代理类执行这个方法并且自动跳到下一个连接点。
下面看一下proceed方法源码:
1 @Override
2 public Object proceed() throws Throwable {
3 // 启动时索引为-1,唤醒连接点,后续递增
4 if (this.currentInterceptorIndex == this.interceptorsAndDynamicMethodMatchers.size() - 1) {
5 return invokeJoinpoint();
6 }
7
8 Object interceptorOrInterceptionAdvice =
9 this.interceptorsAndDynamicMethodMatchers.get(++this.currentInterceptorIndex);
10 if (interceptorOrInterceptionAdvice instanceof InterceptorAndDynamicMethodMatcher) {
11 // 这里进行动态方法匹配校验,静态的方法匹配早已经校验过了(MethodMatcher接口有两种典型:动态/静态校验)
13 InterceptorAndDynamicMethodMatcher dm =
14 (InterceptorAndDynamicMethodMatcher) interceptorOrInterceptionAdvice;
15 if (dm.methodMatcher.matches(this.method, this.targetClass, this.arguments)) {
16 return dm.interceptor.invoke(this);
17 }
18 else {
19 // 动态匹配失败,跳过当前拦截,进入下一个(拦截器链)
21 return proceed();
22 }
23 }
24 else {
25 // 它是一个拦截器,所以我们只调用它:在构造这个对象之前,切入点将被静态地计算。
27 return ((MethodInterceptor) interceptorOrInterceptionAdvice).invoke(this);
28 }
29 }
咱们这里最终调用的是((MethodInterceptor) interceptorOrInterceptionAdvice).invoke(this);就是TransactionInterceptor事务拦截器回调 目标业务方法(addUserBalanceAndUser)。
3.completeTransactionAfterThrowing()
最终调用AbstractPlatformTransactionManager的rollback(),提交事务commitTransactionAfterReturning()最终调用AbstractPlatformTransactionManager的commit(),源码见3.3.3
总结:
可见不管是编程式事务,还是声明式事务,最终源码都是调用事务管理器的PlatformTransactionManager接口的3个方法:
- getTransaction
- commit
- rollback
下一节我们就来看看这个事务管理如何实现这3个方法。
三、事务核心源码
咱们看一下核心类图:
如上提所示,PlatformTransactionManager顶级接口定义了最核心的事务管理方法,下面一层是AbstractPlatformTransactionManager抽象类,实现了PlatformTransactionManager接口的方法并定义了一些抽象方法,供子类拓展。最后下面一层是2个经典事务管理器:
1.DataSourceTransactionmanager,即JDBC单数据库事务管理器,基于Connection实现,
2.JtaTransactionManager,即多数据库事务管理器(又叫做分布式事务管理器),其实现了JTA规范,使用XA协议进行两阶段提交。
我们这里只看基于JDBC connection的DataSourceTransactionmanager源码。
PlatformTransactionManager接口:
public interface PlatformTransactionManager {
// 获取事务状态
TransactionStatus getTransaction(TransactionDefinition definition) throws TransactionException;
// 事务提交
void commit(TransactionStatus status) throws TransactionException;
// 事务回滚
void rollback(TransactionStatus status) throws TransactionException;
}
1. getTransaction获取事务
AbstractPlatformTransactionManager实现了getTransaction()方法如下:
@Override
public final TransactionStatus getTransaction(TransactionDefinition definition) throws TransactionException {
Object transaction = doGetTransaction();
// Cache debug flag to avoid repeated checks.
boolean debugEnabled = logger.isDebugEnabled();
if (definition == null) {
// Use defaults if no transaction definition given.
definition = new DefaultTransactionDefinition();
}
// 如果当前已经存在事务
if (isExistingTransaction(transaction)) {
// 根据不同传播机制不同处理
return handleExistingTransaction(definition, transaction, debugEnabled);
}
// 超时不能小于默认值
if (definition.getTimeout() < TransactionDefinition.TIMEOUT_DEFAULT) {
throw new InvalidTimeoutException("Invalid transaction timeout", definition.getTimeout());
}
// 当前不存在事务,传播机制=MANDATORY(支持当前事务,没事务报错),报错
if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_MANDATORY) {
throw new IllegalTransactionStateException(
"No existing transaction found for transaction marked with propagation 'mandatory'");
}// 当前不存在事务,传播机制=REQUIRED/REQUIRED_NEW/NESTED,这三种情况,需要新开启事务,且加上事务同步
else if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRED ||
definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRES_NEW ||
definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NESTED) {
SuspendedResourcesHolder suspendedResources = suspend(null);
if (debugEnabled) {
logger.debug("Creating new transaction with name [" + definition.getName() + "]: " + definition);
}
try {// 是否需要新开启同步// 开启// 开启
boolean newSynchronization = (getTransactionSynchronization() != SYNCHRONIZATION_NEVER);
DefaultTransactionStatus status = newTransactionStatus(
definition, transaction, true, newSynchronization, debugEnabled, suspendedResources);
doBegin(transaction, definition);// 开启新事务
prepareSynchronization(status, definition);//预备同步
return status;
}
catch (RuntimeException ex) {
resume(null, suspendedResources);
throw ex;
}
catch (Error err) {
resume(null, suspendedResources);
throw err;
}
}
else {
// 当前不存在事务当前不存在事务,且传播机制=PROPAGATION_SUPPORTS/PROPAGATION_NOT_SUPPORTED/PROPAGATION_NEVER,这三种情况,创建“空”事务:没有实际事务,但可能是同步。警告:定义了隔离级别,但并没有真实的事务初始化,隔离级别被忽略有隔离级别但是并没有定义实际的事务初始化,有隔离级别但是并没有定义实际的事务初始化,
if (definition.getIsolationLevel() != TransactionDefinition.ISOLATION_DEFAULT && logger.isWarnEnabled()) {
logger.warn("Custom isolation level specified but no actual transaction initiated; " +
"isolation level will effectively be ignored: " + definition);
}
boolean newSynchronization = (getTransactionSynchronization() == SYNCHRONIZATION_ALWAYS);
return prepareTransactionStatus(definition, null, true, newSynchronization, debugEnabled, null);
}
}
如上图,源码分成了2条处理线,
1.当前已存在事务:isExistingTransaction()判断是否存在事务,存在事务handleExistingTransaction()根据不同传播机制不同处理
2.当前不存在事务: 不同传播机制不同处理
handleExistingTransaction()源码如下:
private TransactionStatus handleExistingTransaction(
TransactionDefinition definition, Object transaction, boolean debugEnabled)
throws TransactionException {
// 1.NERVER(不支持当前事务;如果当前事务存在,抛出异常)报错
if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NEVER) {
throw new IllegalTransactionStateException(
"Existing transaction found for transaction marked with propagation 'never'");
}
// 2.NOT_SUPPORTED(不支持当前事务,现有同步将被挂起)挂起当前事务
if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NOT_SUPPORTED) {
if (debugEnabled) {
logger.debug("Suspending current transaction");
}
Object suspendedResources = suspend(transaction);
boolean newSynchronization = (getTransactionSynchronization() == SYNCHRONIZATION_ALWAYS);
return prepareTransactionStatus(
definition, null, false, newSynchronization, debugEnabled, suspendedResources);
}
// 3.REQUIRES_NEW挂起当前事务,创建新事务
if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRES_NEW) {
if (debugEnabled) {
logger.debug("Suspending current transaction, creating new transaction with name [" +
definition.getName() + "]");
}// 挂起当前事务
SuspendedResourcesHolder suspendedResources = suspend(transaction);
try {// 创建新事务
boolean newSynchronization = (getTransactionSynchronization() != SYNCHRONIZATION_NEVER);
DefaultTransactionStatus status = newTransactionStatus(
definition, transaction, true, newSynchronization, debugEnabled, suspendedResources);
doBegin(transaction, definition);
prepareSynchronization(status, definition);
return status;
}
catch (RuntimeException beginEx) {
resumeAfterBeginException(transaction, suspendedResources, beginEx);
throw beginEx;
}
catch (Error beginErr) {
resumeAfterBeginException(transaction, suspendedResources, beginErr);
throw beginErr;
}
}
// 4.NESTED嵌套事务
if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NESTED) {
if (!isNestedTransactionAllowed()) {
throw new NestedTransactionNotSupportedException(
"Transaction manager does not allow nested transactions by default - " +
"specify 'nestedTransactionAllowed' property with value 'true'");
}
if (debugEnabled) {
logger.debug("Creating nested transaction with name [" + definition.getName() + "]");
}// 是否支持保存点:非JTA事务走这个分支。AbstractPlatformTransactionManager默认是true,JtaTransactionManager复写了该方法false,DataSourceTransactionmanager没有复写,还是true,
if (useSavepointForNestedTransaction()) {
// Usually uses JDBC 3.0 savepoints. Never activates Spring synchronization.
DefaultTransactionStatus status =
prepareTransactionStatus(definition, transaction, false, false, debugEnabled, null);
status.createAndHoldSavepoint();// 创建保存点
return status;
}
else {
// JTA事务走这个分支,创建新事务
boolean newSynchronization = (getTransactionSynchronization() != SYNCHRONIZATION_NEVER);
DefaultTransactionStatus status = newTransactionStatus(
definition, transaction, true, newSynchronization, debugEnabled, null);
doBegin(transaction, definition);
prepareSynchronization(status, definition);
return status;
}
}
if (debugEnabled) {
logger.debug("Participating in existing transaction");
}
if (isValidateExistingTransaction()) {
if (definition.getIsolationLevel() != TransactionDefinition.ISOLATION_DEFAULT) {
Integer currentIsolationLevel = TransactionSynchronizationManager.getCurrentTransactionIsolationLevel();
if (currentIsolationLevel == null || currentIsolationLevel != definition.getIsolationLevel()) {
Constants isoConstants = DefaultTransactionDefinition.constants;
throw new IllegalTransactionStateException("Participating transaction with definition [" +
definition + "] specifies isolation level which is incompatible with existing transaction: " +
(currentIsolationLevel != null ?
isoConstants.toCode(currentIsolationLevel, DefaultTransactionDefinition.PREFIX_ISOLATION) :
"(unknown)"));
}
}
if (!definition.isReadOnly()) {
if (TransactionSynchronizationManager.isCurrentTransactionReadOnly()) {
throw new IllegalTransactionStateException("Participating transaction with definition [" +
definition + "] is not marked as read-only but existing transaction is");
}
}
}// 到这里PROPAGATION_SUPPORTS 或 PROPAGATION_REQUIRED或PROPAGATION_MANDATORY,存在事务加入事务即可,prepareTransactionStatus第三个参数就是是否需要新事务。false代表不需要新事物
boolean newSynchronization = (getTransactionSynchronization() != SYNCHRONIZATION_NEVER);
return prepareTransactionStatus(definition, transaction, false, newSynchronization, debugEnabled, null);
}
如上图,当前线程已存在事务情况下,新的不同隔离级别处理情况:
1.NERVER:不支持当前事务;如果当前事务存在,抛出异常:"Existing transaction found for transaction marked with propagation 'never'"
2.NOT_SUPPORTED:不支持当前事务,现有同步将被挂起:suspend()
3.REQUIRES_NEW挂起当前事务,创建新事务:
1)suspend()
2)doBegin()
4.NESTED嵌套事务
1)非JTA事务:createAndHoldSavepoint()创建JDBC3.0保存点,不需要同步
2) JTA事务:开启新事务,doBegin()+prepareSynchronization()需要同步
这里有几个核心方法:挂起当前事务suspend()、开启新事务doBegin()。
suspend()源码如下:
protected final SuspendedResourcesHolder suspend(Object transaction) throws TransactionException {
if (TransactionSynchronizationManager.isSynchronizationActive()) {// 1.当前存在同步,
List<TransactionSynchronization> suspendedSynchronizations = doSuspendSynchronization();
try {
Object suspendedResources = null;
if (transaction != null) {// 事务不为空,挂起事务
suspendedResources = doSuspend(transaction);
}// 解除绑定当前事务各种属性:名称、只读、隔离级别、是否是真实的事务.
String name = TransactionSynchronizationManager.getCurrentTransactionName();
TransactionSynchronizationManager.setCurrentTransactionName(null);
boolean readOnly = TransactionSynchronizationManager.isCurrentTransactionReadOnly();
TransactionSynchronizationManager.setCurrentTransactionReadOnly(false);
Integer isolationLevel = TransactionSynchronizationManager.getCurrentTransactionIsolationLevel();
TransactionSynchronizationManager.setCurrentTransactionIsolationLevel(null);
boolean wasActive = TransactionSynchronizationManager.isActualTransactionActive();
TransactionSynchronizationManager.setActualTransactionActive(false);
return new SuspendedResourcesHolder(
suspendedResources, suspendedSynchronizations, name, readOnly, isolationLevel, wasActive);
}
catch (RuntimeException ex) {
// doSuspend failed - original transaction is still active...
doResumeSynchronization(suspendedSynchronizations);
throw ex;
}
catch (Error err) {
// doSuspend failed - original transaction is still active...
doResumeSynchronization(suspendedSynchronizations);
throw err;
}
}// 2.没有同步但,事务不为空,挂起事务
else if (transaction != null) {
// Transaction active but no synchronization active.
Object suspendedResources = doSuspend(transaction);
return new SuspendedResourcesHolder(suspendedResources);
}// 2.没有同步但,事务为空,什么都不用做
else {
// Neither transaction nor synchronization active.
return null;
}
}
doSuspend(),挂起事务,AbstractPlatformTransactionManager抽象类doSuspend()会报错:不支持挂起,如果具体事务执行器支持就复写doSuspend(),DataSourceTransactionManager实现如下:
@Override
protected Object doSuspend(Object transaction) {
DataSourceTransactionObject txObject = (DataSourceTransactionObject) transaction;
txObject.setConnectionHolder(null);
return TransactionSynchronizationManager.unbindResource(this.dataSource);
}
挂起DataSourceTransactionManager事务的核心操作就是:
1.把当前事务的connectionHolder数据库连接持有者清空。
2.当前线程解绑datasource.其实就是ThreadLocal移除对应变量(TransactionSynchronizationManager类中定义的private static final ThreadLocal<Map<Object, Object>> resources = new NamedThreadLocal<Map<Object, Object>>("Transactional resources");)
TransactionSynchronizationManager事务同步管理器,该类维护了多个线程本地变量ThreadLocal,如下图:
public abstract class TransactionSynchronizationManager {
private static final Log logger = LogFactory.getLog(TransactionSynchronizationManager.class);
// 事务资源:map<k,v> 两种数据对。1.会话工厂和会话k=SqlsessionFactory v=SqlSessionHolder 2.数据源和连接k=DataSource v=ConnectionHolder
private static final ThreadLocal<Map<Object, Object>> resources =
new NamedThreadLocal<Map<Object, Object>>("Transactional resources");
// 事务同步
private static final ThreadLocal<Set<TransactionSynchronization>> synchronizations =
new NamedThreadLocal<Set<TransactionSynchronization>>("Transaction synchronizations");
// 当前事务名称
private static final ThreadLocal<String> currentTransactionName =
new NamedThreadLocal<String>("Current transaction name");
// 当前事务的只读属性
private static final ThreadLocal<Boolean> currentTransactionReadOnly =
new NamedThreadLocal<Boolean>("Current transaction read-only status");
// 当前事务的隔离级别
private static final ThreadLocal<Integer> currentTransactionIsolationLevel =
new NamedThreadLocal<Integer>("Current transaction isolation level");
// 是否存在事务
private static final ThreadLocal<Boolean> actualTransactionActive =
new NamedThreadLocal<Boolean>("Actual transaction active");
。。。
}
doBegin()源码如下:
@Override
protected void doBegin(Object transaction, TransactionDefinition definition) {
DataSourceTransactionObject txObject = (DataSourceTransactionObject) transaction;
Connection con = null;
try {// 如果事务还没有connection或者connection在事务同步状态,重置新的connectionHolder
if (!txObject.hasConnectionHolder() ||
txObject.getConnectionHolder().isSynchronizedWithTransaction()) {
Connection newCon = this.dataSource.getConnection();
if (logger.isDebugEnabled()) {
logger.debug("Acquired Connection [" + newCon + "] for JDBC transaction");
}// 重置新的connectionHolder
txObject.setConnectionHolder(new ConnectionHolder(newCon), true);
}
//设置新的连接为事务同步中
txObject.getConnectionHolder().setSynchronizedWithTransaction(true);
con = txObject.getConnectionHolder().getConnection();
//conn设置事务隔离级别,只读
Integer previousIsolationLevel = DataSourceUtils.prepareConnectionForTransaction(con, definition);
txObject.setPreviousIsolationLevel(previousIsolationLevel);//DataSourceTransactionObject设置事务隔离级别
// 如果是自动提交切换到手动提交
// so we don't want to do it unnecessarily (for example if we've explicitly
// configured the connection pool to set it already).
if (con.getAutoCommit()) {
txObject.setMustRestoreAutoCommit(true);
if (logger.isDebugEnabled()) {
logger.debug("Switching JDBC Connection [" + con + "] to manual commit");
}
con.setAutoCommit(false);
}
// 如果只读,执行sql设置事务只读
prepareTransactionalConnection(con, definition);
txObject.getConnectionHolder().setTransactionActive(true);// 设置connection持有者的事务开启状态
int timeout = determineTimeout(definition);
if (timeout != TransactionDefinition.TIMEOUT_DEFAULT) {
txObject.getConnectionHolder().setTimeoutInSeconds(timeout);// 设置超时秒数
}
// 绑定connection持有者到当前线程
if (txObject.isNewConnectionHolder()) {
TransactionSynchronizationManager.bindResource(getDataSource(), txObject.getConnectionHolder());
}
}
catch (Throwable ex) {
if (txObject.isNewConnectionHolder()) {
DataSourceUtils.releaseConnection(con, this.dataSource);
txObject.setConnectionHolder(null, false);
}
throw new CannotCreateTransactionException("Could not open JDBC Connection for transaction", ex);
}
}
如上图,开启新事务的准备工作doBegin()的核心操作就是:
1.DataSourceTransactionObject“数据源事务对象”,设置ConnectionHolder,再给ConnectionHolder设置各种属性:自动提交、超时、事务开启、隔离级别。
2.给当前线程绑定一个线程本地变量,key=DataSource数据源 v=ConnectionHolder数据库连接。
2. commit提交事务
一、讲解源码之前先看一下资源管理类:
SqlSessionSynchronization
SqlSessionSynchronization是SqlSessionUtils的一个内部类,继承自TransactionSynchronizationAdapter抽象类,实现了事务同步接口TransactionSynchronization。
类图如下:
TransactionSynchronization接口定义了事务操作时的对应资源的(JDBC事务那么就是SqlSessionSynchronization)管理方法:
1 // 挂起事务 2 void suspend();
3 // 唤醒事务 4 void resume();
5
6 void flush();
7
8 // 提交事务前
9 void beforeCommit(boolean readOnly);
10
11 // 提交事务完成前
12 void beforeCompletion();
13
14 // 提交事务后
15 void afterCommit();
16
17 // 提交事务完成后
18 void afterCompletion(int status);
后续很多都是使用这些接口管理事务。
commit提交事务
AbstractPlatformTransactionManager的commit源码如下:
1 @Override
2 public final void commit(TransactionStatus status) throws TransactionException {
3 if (status.isCompleted()) {// 如果事务已完结,报错无法再次提交
4 throw new IllegalTransactionStateException(
5 "Transaction is already completed - do not call commit or rollback more than once per transaction");
6 }
7
8 DefaultTransactionStatus defStatus = (DefaultTransactionStatus) status;
9 if (defStatus.isLocalRollbackOnly()) {// 如果事务明确标记为回滚,
10 if (defStatus.isDebug()) {
11 logger.debug("Transactional code has requested rollback");
12 }
13 processRollback(defStatus);//执行回滚
14 return;
15 }//如果不需要全局回滚时提交 且 全局回滚
16 if (!shouldCommitOnGlobalRollbackOnly() && defStatus.isGlobalRollbackOnly()) {
17 if (defStatus.isDebug()) {
18 logger.debug("Global transaction is marked as rollback-only but transactional code requested commit");
19 }//执行回滚
20 processRollback(defStatus);
21 // 仅在最外层事务边界(新事务)或显式地请求时抛出“未期望的回滚异常”
23 if (status.isNewTransaction() || isFailEarlyOnGlobalRollbackOnly()) {
24 throw new UnexpectedRollbackException(
25 "Transaction rolled back because it has been marked as rollback-only");
26 }
27 return;
28 }
29 // 执行提交事务
30 processCommit(defStatus);
31 }
如上图,各种判断:
- 1.如果事务明确标记为本地回滚,-》执行回滚
- 2.如果不需要全局回滚时提交 且 全局回滚-》执行回滚
- 3.提交事务,核心方法processCommit()
processCommit如下:
1 private void processCommit(DefaultTransactionStatus status) throws TransactionException {
2 try {
3 boolean beforeCompletionInvoked = false;
4 try {//3个前置操作
5 prepareForCommit(status);
6 triggerBeforeCommit(status);
7 triggerBeforeCompletion(status);
8 beforeCompletionInvoked = true;//3个前置操作已调用
9 boolean globalRollbackOnly = false;//新事务 或 全局回滚失败
10 if (status.isNewTransaction() || isFailEarlyOnGlobalRollbackOnly()) {
11 globalRollbackOnly = status.isGlobalRollbackOnly();
12 }//1.有保存点,即嵌套事务
13 if (status.hasSavepoint()) {
14 if (status.isDebug()) {
15 logger.debug("Releasing transaction savepoint");
16 }//释放保存点
17 status.releaseHeldSavepoint();
18 }//2.新事务
19 else if (status.isNewTransaction()) {
20 if (status.isDebug()) {
21 logger.debug("Initiating transaction commit");
22 }//调用事务处理器提交事务
23 doCommit(status);
24 }
25 // 3.非新事务,且全局回滚失败,但是提交时没有得到异常,抛出异常
27 if (globalRollbackOnly) {
28 throw new UnexpectedRollbackException(
29 "Transaction silently rolled back because it has been marked as rollback-only");
30 }
31 }
32 catch (UnexpectedRollbackException ex) {
33 // 触发完成后事务同步,状态为回滚
34 triggerAfterCompletion(status, TransactionSynchronization.STATUS_ROLLED_BACK);
35 throw ex;
36 }// 事务异常
37 catch (TransactionException ex) {
38 // 提交失败回滚
39 if (isRollbackOnCommitFailure()) {
40 doRollbackOnCommitException(status, ex);
41 }// 触发完成后回调,事务同步状态为未知
42 else {
43 triggerAfterCompletion(status, TransactionSynchronization.STATUS_UNKNOWN);
44 }
45 throw ex;
46 }// 运行时异常
47 catch (RuntimeException ex) { // 如果3个前置步骤未完成,调用前置的最后一步操作
48 if (!beforeCompletionInvoked) {
49 triggerBeforeCompletion(status);
50 }// 提交异常回滚
51 doRollbackOnCommitException(status, ex);
52 throw ex;
53 }// 其它异常
54 catch (Error err) { // 如果3个前置步骤未完成,调用前置的最后一步操作
55 if (!beforeCompletionInvoked) {
56 triggerBeforeCompletion(status);
57 }// 提交异常回滚
58 doRollbackOnCommitException(status, err);
59 throw err;
60 }
61
62 // Trigger afterCommit callbacks, with an exception thrown there
63 // propagated to callers but the transaction still considered as committed.
64 try {
65 triggerAfterCommit(status);
66 }
67 finally {
68 triggerAfterCompletion(status, TransactionSynchronization.STATUS_COMMITTED);
69 }
70
71 }
72 finally {
73 cleanupAfterCompletion(status);
74 }
75 }
如上图,commit事务时,有6个核心操作,分别是3个前置操作,3个后置操作,如下:
1.prepareForCommit(status);源码是空的,没有拓展目前。
2.triggerBeforeCommit(status); 提交前触发操作
protected final void triggerBeforeCommit(DefaultTransactionStatus status) {
if (status.isNewSynchronization()) {
if (status.isDebug()) {
logger.trace("Triggering beforeCommit synchronization");
}
TransactionSynchronizationUtils.triggerBeforeCommit(status.isReadOnly());
}
}
triggerBeforeCommit源码如下:
public static void triggerBeforeCommit(boolean readOnly) {
for (TransactionSynchronization synchronization :TransactionSynchronizationManager.getSynchronizations()){
synchronization.beforeCommit(readOnly);
}
}
如上图,TransactionSynchronizationManager类定义了多个ThreadLocal(线程本地变量),其中一个用以保存当前线程的事务同步:
private static final ThreadLocal<Set<TransactionSynchronization>> synchronizations = new NamedThreadLocal<Set<TransactionSynchronization>>("Transaction synchronizations");
遍历事务同步器,把每个事务同步器都执行“提交前”操作,比如咱们用的jdbc事务,那么最终就是SqlSessionUtils.beforeCommit()->this.holder.getSqlSession().commit();提交会话。(源码由于是spring管理实务,最终不会执行事务提交,例如是DefaultSqlSession:执行清除缓存、重置状态操作)
3.triggerBeforeCompletion(status);完成前触发操作,如果是jdbc事务,那么最终就是,
SqlSessionUtils.beforeCompletion->
TransactionSynchronizationManager.unbindResource(sessionFactory); 解绑当前线程的会话工厂
this.holder.getSqlSession().close();关闭会话。(源码由于是spring管理实务,最终不会执行事务close操作,例如是DefaultSqlSession,也会执行各种清除收尾操作)
4.triggerAfterCommit(status);提交事务后触发操作。TransactionSynchronizationUtils.triggerAfterCommit();->TransactionSynchronizationUtils.invokeAfterCommit,如下:
public static void invokeAfterCommit(List<TransactionSynchronization> synchronizations) {
if (synchronizations != null) {
for (TransactionSynchronization synchronization : synchronizations) {
synchronization.afterCommit();
}
}
}
好吧,一顿找,最后在TransactionSynchronizationAdapter中复写过,并且是空的....SqlSessionSynchronization继承了TransactionSynchronizationAdapter但是没有复写这个方法。
5.triggerAfterCompletion(status, TransactionSynchronization.STATUS_COMMITTED);
TransactionSynchronizationUtils.TransactionSynchronizationUtils.invokeAfterCompletion,如下:
public static void invokeAfterCompletion(List<TransactionSynchronization> synchronizations, int completionStatus) {
if (synchronizations != null) {
for (TransactionSynchronization synchronization : synchronizations) {
try {
synchronization.afterCompletion(completionStatus);
}
catch (Throwable tsex) {
logger.error("TransactionSynchronization.afterCompletion threw exception", tsex);
}
}
}
}
afterCompletion:对于JDBC事务来说,最终:
1)如果会话任然活着,关闭会话,
2)重置各种属性:SQL会话同步器(SqlSessionSynchronization)的SQL会话持有者(SqlSessionHolder)的referenceCount引用计数、synchronizedWithTransaction同步事务、rollbackOnly只回滚、deadline超时时间点。
6.cleanupAfterCompletion(status);
1)设置事务状态为已完成。
- 如果是新的事务同步,解绑当前线程绑定的数据库资源,重置数据库连接
3)如果存在挂起的事务(嵌套事务),唤醒挂起的老事务的各种资源:数据库资源、同步器。
private void cleanupAfterCompletion(DefaultTransactionStatus status) {
status.setCompleted();//设置事务状态完成 //如果是新的同步,清空当前线程绑定的除了资源外的全部线程本地变量:包括事务同步器、事务名称、只读属性、隔离级别、真实的事务激活状态
if (status.isNewSynchronization()) {
TransactionSynchronizationManager.clear();
}//如果是新的事务同步
if (status.isNewTransaction()) {
doCleanupAfterCompletion(status.getTransaction());
}//如果存在挂起的资源
if (status.getSuspendedResources() != null) {
if (status.isDebug()) {
logger.debug("Resuming suspended transaction after completion of inner transaction");
}//唤醒挂起的事务和资源(重新绑定之前挂起的数据库资源,唤醒同步器,注册同步器到TransactionSynchronizationManager)
resume(status.getTransaction(), (SuspendedResourcesHolder) status.getSuspendedResources());
}
}
对于DataSourceTransactionManager,doCleanupAfterCompletion源码如下:
protected void doCleanupAfterCompletion(Object transaction) {
DataSourceTransactionObject txObject = (DataSourceTransactionObject) transaction;
// 如果是最新的连接持有者,解绑当前线程绑定的<数据库资源,ConnectionHolder>
if (txObject.isNewConnectionHolder()) {
TransactionSynchronizationManager.unbindResource(this.dataSource);
}
// 重置数据库连接(隔离级别、只读)
Connection con = txObject.getConnectionHolder().getConnection();
try {
if (txObject.isMustRestoreAutoCommit()) {
con.setAutoCommit(true);
}
DataSourceUtils.resetConnectionAfterTransaction(con, txObject.getPreviousIsolationLevel());
}
catch (Throwable ex) {
logger.debug("Could not reset JDBC Connection after transaction", ex);
}
if (txObject.isNewConnectionHolder()) {
if (logger.isDebugEnabled()) {
logger.debug("Releasing JDBC Connection [" + con + "] after transaction");
}// 资源引用计数-1,关闭数据库连接
DataSourceUtils.releaseConnection(con, this.dataSource);
}
// 重置连接持有者的全部属性
txObject.getConnectionHolder().clear();
}
3. rollback回滚事务
AbstractPlatformTransactionManager中rollback源码如下:
public final void rollback(TransactionStatus status) throws TransactionException {
if (status.isCompleted()) {
throw new IllegalTransactionStateException(
"Transaction is already completed - do not call commit or rollback more than once per transaction");
}
DefaultTransactionStatus defStatus = (DefaultTransactionStatus) status;
processRollback(defStatus);
}
processRollback源码如下:
private void processRollback(DefaultTransactionStatus status) {
try {
try {// 解绑当前线程绑定的会话工厂,并关闭会话
triggerBeforeCompletion(status);
if (status.hasSavepoint()) {// 1.如果有保存点,即嵌套式事务
if (status.isDebug()) {
logger.debug("Rolling back transaction to savepoint");
}//回滚到保存点
status.rollbackToHeldSavepoint();
}//2.如果就是一个简单事务
else if (status.isNewTransaction()) {
if (status.isDebug()) {
logger.debug("Initiating transaction rollback");
}//回滚核心方法
doRollback(status);
}//3.当前存在事务且没有保存点,即加入当前事务的
else if (status.hasTransaction()) {//如果已经标记为回滚 或 当加入事务失败时全局回滚(默认true)
if (status.isLocalRollbackOnly() || isGlobalRollbackOnParticipationFailure()) {
if (status.isDebug()) {//debug时会打印:加入事务失败-标记已存在事务为回滚
logger.debug("Participating transaction failed - marking existing transaction as rollback-only");
}//设置当前connectionHolder:当加入一个已存在事务时回滚
doSetRollbackOnly(status);
}
else {
if (status.isDebug()) {
logger.debug("Participating transaction failed - letting transaction originator decide on rollback");
}
}
}
else {
logger.debug("Should roll back transaction but cannot - no transaction available");
}
}
catch (RuntimeException ex) {//关闭会话,重置SqlSessionHolder属性
triggerAfterCompletion(status, TransactionSynchronization.STATUS_UNKNOWN);
throw ex;
}
catch (Error err) {
triggerAfterCompletion(status, TransactionSynchronization.STATUS_UNKNOWN);
throw err;
}
triggerAfterCompletion(status, TransactionSynchronization.STATUS_ROLLED_BACK);
}
finally {、、解绑当前线程
cleanupAfterCompletion(status);
}
}
如上图,有几个公共方法和提交事务时一致,就不再重复。
这里主要看doRollback,DataSourceTransactionManager的doRollback()源码如下:
protected void doRollback(DefaultTransactionStatus status) {
DataSourceTransactionObject txObject = (DataSourceTransactionObject) status.getTransaction();
Connection con = txObject.getConnectionHolder().getConnection();
if (status.isDebug()) {
logger.debug("Rolling back JDBC transaction on Connection [" + con + "]");
}
try {
con.rollback();
}
catch (SQLException ex) {
throw new TransactionSystemException("Could not roll back JDBC transaction", ex);
}
}
好吧,一点不复杂,就是Connection的rollback.
四、时序图
特地整理了时序图(简单的新事务,没有画出保存点等情况)如下:
标签:status,事务,transaction,return,spring,事物,回滚,null From: https://www.cnblogs.com/mountainstudy/p/17098326.html