首页 > 其他分享 >Avro 序列化并集成到Kafka

Avro 序列化并集成到Kafka

时间:2023-02-05 23:22:38浏览次数:41  
标签:writer Avro Kafka record props put new 序列化

有关Avro Logical Types的序列化,官网给的文档十分粗糙,这里给出详细的序列和反序列化方法

1. 本地

1.1 Logical Type在avro文件中的写法

{
  "type": "record",
  "name": "User",
  "namespace": "org.example",
  "fields":[
    {"name":"id","type":"string"},
    {"name":"date","type":{"type": "int", "logicalType": "date"}},
    {"name":"timestamp","type":{"type": "long", "logicalType": "timestamp-millis"}},
    {"name":"value","type":{"type":"bytes","logicalType":"decimal","precision":22,"scale":2}}
  ]
}

以date为例,avro在序列化后实际存储的是int格式,反序列化时转换回date类型,即int是date的实际类型,每个Logical Type的实际类型可在官网找到

1.2 序列化和反序列化

//读入schema
Schema schema = new Schema.Parser().parse(Main.class.getClassLoader().getResourceAsStream("avro/view.avsc"));

//创建一个record
GenericData.Record record = new GenericData.Record(schema);
record.put("id", "001");
record.put("value", BigDecimal.valueOf(67.78));
record.put("date", LocalDate.now());
record.put("timestamp", Instant.now());

// 序列化
GenericDatumWriter<GenericData.Record> writer = new GenericDatumWriter<>(schema);
//!!!最重要的一步,需要添加所需类型的转换器
writer.getData().addLogicalTypeConversion(new Conversions.DecimalConversion());
writer.getData().addLogicalTypeConversion(new TimeConversions.DateConversion());
writer.getData().addLogicalTypeConversion(new TimeConversions.TimestampMillisConversion());

ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
BinaryEncoder encoder = EncoderFactory.get().directBinaryEncoder(outputStream, null);
writer.write(record, encoder);
//序列化完成,record转为了byte类型,此时就可以传输了
byte[] bytes = outputStream.toByteArray();

//反序列化
GenericDatumReader<GenericData.Record> reader = new GenericDatumReader<>(schema);
ByteArrayInputStream inputStream = new ByteArrayInputStream(bytes);
BinaryDecoder decoder = DecoderFactory.get().directBinaryDecoder(inputStream, null);
GenericData.Record newRecord = null;
try {
    newRecord = reader.read(null, decoder);
} catch (IOException e) {
    throw new RuntimeException(e);
}
System.out.println(newRecord);

2.集成到kafka

主要是实现kafka的Serializer接口,并在kafka的properties中指定

2.1 发送端

完成Serializer接口

public class GenericRecordSerializer implements Serializer<GenericData.Record> {
    protected GenericDatumWriter<GenericData.Record> writer;

    @Override
    public byte[] serialize(String s, GenericData.Record record) {
        writer = new GenericDatumWriter<>(record.getSchema());
        writer.getData().addLogicalTypeConversion(new Conversions.DecimalConversion());
        writer.getData().addLogicalTypeConversion(new TimeConversions.DateConversion());
        writer.getData().addLogicalTypeConversion(new TimeConversions.TimestampMillisConversion());

        ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
        BinaryEncoder encoder = EncoderFactory.get().directBinaryEncoder(outputStream, null);
        try {
            writer.write(record, encoder);
            encoder.flush();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return outputStream.toByteArray();
    }
}

kafkaproperties中指定

Properties props = new Properties();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, GenericRecordSerializer.class);
Producer<String, GenericRecord> sender = new KafkaProducer<>(props);

2.2 接收端

完成Deserializer接口

public class GenericRecordDeserializer implements Deserializer<GenericData.Record>{
  	//Deserializer同样需要添加转换器!!!
    public GenericRecordDeserializer(){
        GenericDatumWriter<GenericData.Record> writer = new GenericDatumWriter<>();
        writer.getData().addLogicalTypeConversion(new Conversions.DecimalConversion());
        writer.getData().addLogicalTypeConversion(new TimeConversions.DateConversion());
        writer.getData().addLogicalTypeConversion(new TimeConversions.TimestampMillisConversion());
    }

    @Override
    public GenericData.Record deserialize(String s, byte[] bytes) {
      	//指定Schema
      	Schema schema = ....
        GenericDatumReader<GenericData.Record> reader = new GenericDatumReader<>(schema);
        ByteArrayInputStream inputStream = new ByteArrayInputStream(bytes);
        BinaryDecoder decoder = DecoderFactory.get().directBinaryDecoder(inputStream, null);
        GenericData.Record record;
        try {
            record = reader.read(null, decoder);
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return record;
    }
}

kafkaproperties中指定

Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");
props.put(ConsumerConfig.GROUP_ID_CONFIG, "record-consumer-14");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, GenericRecordDeserializer.class);
KafkaConsumer<String, GenericData.Record> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Collections.singletonList("record-2"));

标签:writer,Avro,Kafka,record,props,put,new,序列化
From: https://www.cnblogs.com/INnoVationv2/p/17094166.html

相关文章