首页 > 其他分享 >【C语言 数据结构】数组与对称矩阵的压缩存储

【C语言 数据结构】数组与对称矩阵的压缩存储

时间:2023-02-04 12:02:33浏览次数:48  
标签:存储 int 元素 矩阵 C语言 数组 数据结构 data


文章目录

  • ​​数组的定义​​
  • ​​数组的顺序表示和实现​​
  • ​​顺序表中查找和修改数组元素​​
  • ​​矩阵的压缩存储​​
  • ​​特殊矩阵​​
  • ​​稀疏矩阵​​

数组的定义

提到数组,大家首先会想到的是:很多编程语言中都提供有数组这种数据类型,比如 C/C++、Java、Go、C# 等。但本节我要讲解的不是作为数据类型的数组,而是数据结构中提供的一种叫数组的存储结构。

和线性存储结构相比,数组最大的不同是:它存储的数据可以包含多种“一对一”的逻辑关系。举个简单的例子:

【C语言 数据结构】数组与对称矩阵的压缩存储_数据结构


上图中,{a1, a2, a3, a4}、{b1, b2, b3, b4}、{c1, c2, c3, c4}、{d1, d2, d3, d4} 中各自包含的元素具有“一对一”的逻辑关系,同时 a、b、c、d 这 4 个序列也具有“一对一”的逻辑关系。

这样存储不止一种“一对一”逻辑关系的数据,数据结构就推荐使用数组存储结构。


对于数组存储结构,我们可以这样理解它:数组是对线性表的扩展,是一种“特殊”的线性存储结构,用来存储具有多种“一对一”逻辑关系的数据。

实际场景中,存储具有 N 种“一对一”逻辑关系的数据,通常会建立 N 维数组:

  • 一维数组和其它线性存储结构很类似,用来存储只有一种“一对一”逻辑关系的数据:

【C语言 数据结构】数组与对称矩阵的压缩存储_矩阵_02

  • 二维数组用来存储包含两种“一对一”逻辑关系的数据。二维数组可以看作是存储一维数组的一维数组
  • n 维数组用来存储包含 n 种“一对一”逻辑关系的数据,可以看作是存储 n-1 维数组的一维数组;

数组存储结构还具有一些其它的特性,包括:

  • 无论数组的维度是多少,数组中的数据类型都必须一致;
  • 数组一旦建立,它的维度将不再改变;
  • 数组存储结构不会对内部的元素做插入和删除操作,常见的操作有 4 种,分别是初始化数组、销毁数组、取数组中的元素和修改数组中的元素。

数组的顺序表示和实现

数组可以是多维的,而顺序表只能是一维的线性空间。要想将 N 维的数组存储到顺序表中,可以采用以下两种方案:

  • 以列序为主(先列后行):按照行号从小到大的顺序,依次存储每一列的元素;
  • 以行序为主(先行后序):按照列号从小到大的顺序,依次存储每一行的元素。

多维数组中,最常用的是二维数组,接下里就以二维数组为例,讲解数组的顺序存储结构。

【C语言 数据结构】数组与对称矩阵的压缩存储_数据_03


所示的二维数组按照“列序为主”的方案存储时,数组中的元素在顺序表中的存储状态如下图所示:

【C语言 数据结构】数组与对称矩阵的压缩存储_数据_04


同样的道理,按照“行序为主”的方案存储数组时,各个元素在顺序表中的存储状态如图

【C语言 数据结构】数组与对称矩阵的压缩存储_数据_05


顺序表中查找和修改数组元素

注意,只有在顺序表内查找到数组中的目标元素之后,才能对该元素执行读取和修改操作。

在 N 维数组中查找目标元素,需知道以下信息:

  • 数组的存储方式;
  • 数组在内存中存放的起始地址;
  • 目标元素在数组中的坐标。比如说,二维数组中是通过行标和列标来确定元素位置的;
  • 数组中元素的类型,即数组中单个数据元素所占内存的大小,通常用字母 L 表示;

根据存储方式的不同,查找目标元素的方式也不同。仍以二维数组为例,如果数组采用“行序为主”的存储方式,则在二维数组 anm 中查找 aij 位置的公式为:

LOC(i, j) = LOC(0, 0) + (i * m + j) * L;

其中,LOC(i, j) 为 aij 在内存中的地址,LOC(0, 0) 为二维数组在内存中存放的起始位置(也就是 a00 的位置)。

而如果采用以列存储的方式,在 anm 中查找 aij 的方式为:

LOC(i, j) = LOC(0, 0) + (j * n + i) * L;

根据以上两个公式,就可以在顺序表中找到目标元素,自然也就可以进行读取和修改操作了。


代码实现

#include<stdarg.h>
#include<malloc.h>
#include<stdio.h>
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h>

#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
#define OVERFLOW 3
#define UNDERFLOW 4
typedef int Status; //Status是函数的类型,其值是函数结果状态代码,如OK等
typedef int Boolean; //Boolean是布尔类型,其值是TRUE或FALSE
typedef int ElemType;

#define MAX_ARRAY_DIM 8 //假设数组维数的最大值为8
typedef struct
{
ElemType* base; //数组元素基址,由InitArray分配
int dim; //数组维数
int* bounds; //数组维界基址,由InitArray分配
int* constants; // 数组映象函数常量基址,由InitArray分配
} Array;

Status InitArray(Array* A, int dim, ...)
{
//若维数dim和各维长度合法,则构造相应的数组A,并返回OK
int elemtotal = 1, i; // elemtotal是元素总值
va_list ap;
if (dim<1 || dim>MAX_ARRAY_DIM)
return ERROR;
(*A).dim = dim;
(*A).bounds = (int*)malloc(dim * sizeof(int));
if (!(*A).bounds)
exit(OVERFLOW);
va_start(ap, dim);
for (i = 0; i < dim; ++i)
{
(*A).bounds[i] = va_arg(ap, int);
if ((*A).bounds[i] < 0)
return UNDERFLOW;
elemtotal *= (*A).bounds[i];
}
va_end(ap);
(*A).base = (ElemType*)malloc(elemtotal * sizeof(ElemType));
if (!(*A).base)
exit(OVERFLOW);
(*A).constants = (int*)malloc(dim * sizeof(int));
if (!(*A).constants)
exit(OVERFLOW);
(*A).constants[dim - 1] = 1;
for (i = dim - 2; i >= 0; --i)
(*A).constants[i] = (*A).bounds[i + 1] * (*A).constants[i + 1];
return OK;
}

Status DestroyArray(Array* A)
{
//销毁数组A
if ((*A).base)
{
free((*A).base);
(*A).base = NULL;
}
else
return ERROR;
if ((*A).bounds)
{
free((*A).bounds);
(*A).bounds = NULL;
}
else
return ERROR;
if ((*A).constants)
{
free((*A).constants);
(*A).constants = NULL;
}
else
return ERROR;
return OK;
}

Status Locate(Array A, va_list ap, int* off) // Value()、Assign()调用此函数 */
{
//若ap指示的各下标值合法,则求出该元素在A中的相对地址off
int i, ind;
*off = 0;
for (i = 0; i < A.dim; i++)
{
ind = va_arg(ap, int);
if (ind < 0 || ind >= A.bounds[i])
return OVERFLOW;
*off += A.constants[i] * ind;
}
return OK;
}

Status Value(ElemType* e, Array A, ...) //在VC++中,...之前的形参不能是引用类型
{
//依次为各维的下标值,若各下标合法,则e被赋值为A的相应的元素值
va_list ap;
Status result;
int off;
va_start(ap, A);
if ((result = Locate(A, ap, &off)) == OVERFLOW) //调用Locate()
return result;
*e = *(A.base + off);
return OK;
}

Status Assign(Array* A, ElemType e, ...)
{
//依次为各维的下标值,若各下标合法,则将e的值赋给A的指定的元素
va_list ap;
Status result;
int off;
va_start(ap, e);
if ((result = Locate(*A, ap, &off)) == OVERFLOW) //调用Locate()
return result;
*((*A).base + off) = e;
return OK;
}

int main()
{
Array A;
int i, j, k, * p, dim = 3, bound1 = 3, bound2 = 4, bound3 = 2; //a[3][4][2]数组
ElemType e, * p1;
InitArray(&A, dim, bound1, bound2, bound3); //构造3*4*2的3维数组A
p = A.bounds;
printf("A.bounds=");
for (i = 0; i < dim; i++) //顺序输出A.bounds
printf("%d ", *(p + i));
p = A.constants;
printf("\nA.constants=");
for (i = 0; i < dim; i++) //顺序输出A.constants
printf("%d ", *(p + i));
printf("\n%d页%d行%d列矩阵元素如下:\n", bound1, bound2, bound3);
for (i = 0; i < bound1; i++)
{
for (j = 0; j < bound2; j++)
{
for (k = 0; k < bound3; k++)
{
Assign(&A, i * 100 + j * 10 + k, i, j, k); // 将i*100+j*10+k赋值给A[i][j][k]
Value(&e, A, i, j, k); //将A[i][j][k]的值赋给e
printf("A[%d][%d][%d]=%2d ", i, j, k, e); //输出A[i][j][k]
}
printf("\n");
}
printf("\n");
}
p1 = A.base;
printf("A.base=\n");
for (i = 0; i < bound1 * bound2 * bound3; i++) //顺序输出A.base
{
printf("%4d", *(p1 + i));
if (i % (bound2 * bound3) == bound2 * bound3 - 1)
printf("\n");
}
DestroyArray(&A);
return 0;
}

矩阵的压缩存储

特殊矩阵

这里所说的特殊矩阵,主要分为以下两类:

  • 含有大量相同数据元素的矩阵,比如对称矩阵;
  • 含有大量 0 元素的矩阵,比如稀疏矩阵、上(下)三角矩阵;

针对以上两类矩阵,数据结构的压缩存储思想是:矩阵中的相同数据元素(包括元素 0)只存储一个

【C语言 数据结构】数组与对称矩阵的压缩存储_c语言_06


数据元素沿主对角线对应相等,这类矩阵称为对称矩阵,矩阵中有两条对角线,对角线称为主对角线,另一条从左下角到右上角的对角线为副对角线。对称矩阵指的是各数据元素沿主对角线对称的矩阵。对称矩阵的实现过程是,若存储下三角中的元素,只需将各元素所在的行标 i 和列标 j 代入下面的公式:

【C语言 数据结构】数组与对称矩阵的压缩存储_数据结构_07


存储上三角的元素要将各元素的行标 i 和列标 j 代入另一个公式:

【C语言 数据结构】数组与对称矩阵的压缩存储_矩阵_08


最终求得的 k 值即为该元素存储到数组中的位置(矩阵中元素的行标和列标都从 1 开始)。例如,在数组 skr[6] 中存储图 1 中的对称矩阵,则矩阵的压缩存储状态如图所示(存储上三角和下三角的结果相同):

【C语言 数据结构】数组与对称矩阵的压缩存储_数据结构_09


注意,以上两个公式既是用来存储矩阵中元素的,也用来从数组中提取矩阵相应位置的元素。例如,如果想从图中的数组提取矩阵中位于 (3,1) 处的元素,由于该元素位于下三角,需用下三角公式获取元素在数组中的位置,即:

【C语言 数据结构】数组与对称矩阵的压缩存储_数据_10


稀疏矩阵

【C语言 数据结构】数组与对称矩阵的压缩存储_矩阵_11


如果矩阵中分布有大量的元素 0,即非 0 元素非常少,这类矩阵称为稀疏矩阵。

压缩存储稀疏矩阵的方法是:只存储矩阵中的非 0 元素,与前面的存储方法不同,稀疏矩阵非 0 元素的存储需同时存储该元素所在矩阵中的行标和列标。

例如,存储上图中的稀疏矩阵,需存储以下信息:

  • (1,1,1):数据元素为 1,在矩阵中的位置为 (1,1);
  • (3,3,1):数据元素为 3,在矩阵中的位置为 (3,1);
  • (5,2,3):数据元素为 5,在矩阵中的位置为 (2,3);
  • 除此之外,还要存储矩阵的行数 3 和列数 3;

【C语言 数据结构】数组与对称矩阵的压缩存储_数组_12


**若对其进行压缩存储,矩阵中各非 0 元素的存储状态如图 **

【C语言 数据结构】数组与对称矩阵的压缩存储_数组_13


三元组的结构体

//三元组结构体
typedef struct {
int i,j;//行标i,列标j
int data;//元素值
}triple;

由于稀疏矩阵中非 0 元素有多个,因此需要建立 triple 数组存储各个元素的三元组。除此之外,考虑到还要存储矩阵的总行数和总列数,因此可以采用以下结构表示整个稀疏矩阵:

#define number 20
//矩阵的结构表示
typedef struct {
triple data[number];//存储该矩阵中所有非0元素的三元组
int mu, nu, tu;//mu和nu分别记录矩阵的行数和列数,tu记录矩阵中所有的非0元素的个数
}TSMatrix;
#include<stdio.h>
#define NUM 3
//存储三元组的结构体
typedef struct {
int i, j;
int data;
}triple;
//存储稀疏矩阵的结构体
typedef struct {
triple data[NUM];
int mu, nu, tu;
}TSMatrix;
//输出存储的稀疏矩阵
void display(TSMatrix M);
int main() {
TSMatrix M;
M.mu = 3;
M.nu = 3;
M.tu = 3;
M.data[0].i = 1;
M.data[0].j = 1;
M.data[0].data = 1;
M.data[1].i = 2;
M.data[1].j = 3;
M.data[1].data = 5;
M.data[2].i = 3;
M.data[2].j = 1;
M.data[2].data = 3;
display(M);
return 0;
}
void display(TSMatrix M) {
int i, j, k;
for (i = 1; i <= M.mu; i++) {
for (j = 1; j <= M.nu; j++) {
int value = 0;
for (k = 0; k < M.tu; k++) {
if (i == M.data[k].i && j == M.data[k].j) {
printf("%d ", M.data[k].data);
value = 1;
break;
}
}
if (value == 0)
printf("0 ");
}
printf("\n");
}
}


标签:存储,int,元素,矩阵,C语言,数组,数据结构,data
From: https://blog.51cto.com/u_15320818/6037093

相关文章

  • 秋招备战——数据结构
    二叉树满二叉树,深度为i,总共有pow(2,i)-1个节点的二叉树称为满二叉树哈夫曼树:带权路径最短的二叉树称为哈夫曼树或最优二叉树。终端结点数为n0,度为2的结点数为n2,那么n0=......
  • 模拟实现不受限制的字符串函数--C语言版
    C语言中提供了许多十分好用的库函数,一旦我们掌握了它们,我们使用C语言写代码就会变得更加得心应手。1.strlenstrlen函数就是计算字符串的长度的,它会一直读取到\0,它的返回值就......
  • 二分查找——C语言描述
    二分查找——C语言描述目录二分查找——C语言描述0测试用例框架1定义2代码4测试用例0测试用例框架https://blog.csdn.net/m0_59469991/article/details/127137119?......
  • 冒泡排序——C语言描述
    冒泡排序——C语言描述目录冒泡排序——C语言描述0测试用例框架1定义2代码4测试用例0测试用例框架https://blog.csdn.net/m0_59469991/article/details/127137119?......
  • 数据结构-小孩出圈问题(约瑟夫环问题)
    假设有m个小孩,数到n的小孩出列,直到全部出去为止。使用环形链表解决约瑟夫环问题。packagecom.linkedlist;publicclassJosephuLinkeslist{publicstaticvoid......
  • 【Matlab学习2.5】稀疏矩阵
    矩阵的存储方式完全存储方式:将矩阵的全部元素按列存储。稀疏存储方式:只存储矩阵的非零元素的值及其位置,即行号和列号。注意,采用稀疏存储方式时,矩阵元素的存储顺序并没有......
  • C语言-猜数游戏
    整理文件发现以前写的C语言猜数游戏1-效果演示2-程序#include<stdio.h>#include<stdlib.h>#include<time.h>intmain(){ srand(time(0)); intnumber=rand......
  • C语言笔记
    分支语句(选择结构)1.if语句悬空else(else只会与离他最近的未匹配的if匹配!)就近原则养成习惯,每个if后加{}intmain(){ inta=0; intb=2; if(a==1) if(b==......
  • 【C语言】程序的翻译环境和执行环境
    ......
  • C语言-链表流星雨(EsayX)
    刷B站看到的,做个玩玩。IDE:VisualStudio2022。依赖EsayX图形库1-效果 2-程序/*链表流星雨单文件版本依赖EsayX图形库*/#include<stdio.h>#include<stdlib.h>......