Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
给你一个n个整数组成的序列,每次只能交换相邻的两个元素,问你最少要进行多少次交换才能使得整个整数序列上升有序。
假设当前处理第i个数,我们只需要计算出i的逆序加到总和ans上即可.i的逆序为:在i之前的那些比i大的数的个数.所以从0到n-1一一扫描,令x[v]=1,表示之前的扫描已经有一个值为v的数被扫描到了.所以当我们处理第i个数a[i]的时候,它的逆序为:x[max]+x[max-1]+…+x[a[i]+1]的值( 即为sum(max)-(x[0]+x[1]+…+x[a[i]-1]) ),且我们需要令x[a[i]]++.
最终可以算出逆序总值ans.
但是此题的max高达10亿-1,我们不可能去开一个这么大的数组,但是数只有50W个,我们可以开个50W的数组.,而且我们需要的逆序数仅仅相关与数之间的相对大小,比如3,888,1000000 这三个数的序列我们完全可以用1,2,3这三个数的序列代替,他们的逆序数是一样的.
所以我们将先对读入的数组离散化处理,使得他们的值集中,但是不影响他们之间的相对大小.
然后再用树状数组即可.
AC代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<stdlib.h>
#include<queue>
#include<map>
#include<iomanip>
#include<math.h>
using namespace std;
typedef long long ll;
typedef double ld;
const int MAXN=500000+1000;
int c[MAXN];
int lowbit(int x)
{
return x&(-x);
}
int sum(int x)
{
int res=0;
while(x>0)
{
res+=c[x];
x -=lowbit(x);
}
return res;
}
void add(int x,int v)
{
while(x<=MAXN)
{
c[x]+=v;
x+=lowbit(x);
}
}
struct node
{
int v;
int index;
bool operator<(const node& b)const
{
return v<b.v;
}
} nodes[MAXN];
int b[MAXN];//将初始数组重新赋值后 相对大小不变的新数组
int main()
{
int n;
while(scanf("%d",&n)==1&&n)
{
for(int i=1; i<=n; i++)
{
scanf("%d",&nodes[i].v);
nodes[i].index=i;
}
sort(nodes+1,nodes+n+1);
memset(b,0,sizeof(b));
b[nodes[1].index]=1;
for(int i=2; i<=n; i++)
{
if(nodes[i].v==nodes[i-1].v)
b[ nodes[i].index ]=b[ nodes[i-1].index ];
else
b[ nodes[i].index ]=i;
}
memset(c,0,sizeof(c));
long long ans=0;
for(int i=1; i<=n; i++)
{
add(b[i],1);//当前扫描的值是b[i],那么在x[b[i]]这个点上加1,表示又出现了1个b[i]值
ans += sum(n)-sum(b[i]);
}
printf("%I64d\n",ans);
}
return 0;
}
标签:index,2299,sequence,int,QuickSort,POJ,input,nodes,include From: https://blog.51cto.com/u_15952369/6035589