首页 > 其他分享 >零基础半天做出物体检测

零基础半天做出物体检测

时间:2022-09-03 15:26:35浏览次数:96  
标签:yolov5 检测 物体 labels train 半天 path os dir

零基础半天做出物体检测

声明:此项目是本人应对学校的课程设计(大四,学校突然开展此课设并且他不授课,就去实验室去做这个东西。重点是啥也不教,让10天做出来!吐槽一下,拜托,时间很宝贵的,基本都要考研的,纯纯去浪费时间是吧),本人Java学的不错,python一点不会(虽然做完也不会),仅适合跟本人一样需要应付的学生。

首先下载Anaconda(自带python)跟pycharm

我的此步骤参考链接:利用Anaconda安装pytorch和paddle深度学习环境+pycharm安装---免额外安装CUDA和cudnn(适合小白的保姆级教学)_炮哥带你学的博客-CSDN博客_利用anaconda安装pytorch

PS:整个项目完全跟着该作者做的,可以一直看他的博客,还有Bilibili视频(感谢这些大佬)【手把手教你搭建自己的yolov5目标检测平台】https://www.bilibili.com/video/BV1f44y187Xg?vd_source=888876f014ccbda4b30441f14d1b65d7。本人以下内容对一些自己操作过程中遇见的麻烦跟机型问题进行补充,具体请看上述链接。

个人做法

1.搜集数据

本人数据集是个人搜集的(不会爬虫),第一步百度,打开图片,第二部打开图片下载助手下载(用的是EDGE浏览器,谷歌的插件国内不好访问,现在EDGE是真的香,推荐一手)

————————————————————————————————————————————————————

2.打标

两种方式:

1.网站 https://www.makesense.ai/ ,个人使用感觉:不太稳定,碰到两次打完之后没有响应(白白浪费时间,而且下载下来的xml不清楚如何去对应(采用的相对路径,其他标签不知道有啥用,怕出错),个人不太推荐

  1. 软件 labelimg

    python的标准打标软件(个人猜测,瞎说的),安装链接目标检测---利用labelimg制作自己的深度学习目标检测数据集_炮哥带你学的博客-CSDN博客

    选择自动保存,位置自定,xml里面是绝对路径,个人推荐

3.下载YOLO V5

上面博客是YOLOV5,我下载的是V6版本,差别不大。

PS:安装依赖pycharm默认是conda安装,导致本人电脑(mac m1系列)opencv_python安装不上,推荐用官网给的pip安装(注意换源)。注:个人感觉pip跟conda就像java的maven跟gradle,前端的npm跟yarn。

4.划分训练集跟测试集

windows就直接用上述博客代码就好,mac他的代码无法运行(打断点在OS给一个赋值时程序终止),mac请用下面代码

import os
import random
import xml.etree.ElementTree as ET
from shutil import copyfile

classes = ["Ant", "BodyBird","Bird"]  ### 注意与自己的类对应,对应,对应,不然转好的txt文件是空的
# classes=["ball"]

TRAIN_RATIO = 80  ### 按自己的要求划分,这里代表是train:test=8:2


def clear_hidden_files(path):
    dir_list = os.listdir(path)
    for i in dir_list:
        abspath = os.path.join(os.path.abspath(path), i)
        if os.path.isfile(abspath):
            if i.startswith("._"):
                os.remove(abspath)
        else:
            clear_hidden_files(abspath)


def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def convert_annotation(image_id):
    in_file = open('VOCdevkit/VOC2007/Annotations/%s.xml' % image_id)
    out_file = open('VOCdevkit/VOC2007/YOLOLabels/%s.txt' % image_id, 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
    in_file.close()
    out_file.close()


wd = os.getcwd()
wd = os.getcwd()
data_base_dir = os.path.join(wd, "VOCdevkit/")
if not os.path.isdir(data_base_dir):
    os.mkdir(data_base_dir)
work_sapce_dir = os.path.join(data_base_dir, "VOC2007/")
if not os.path.isdir(work_sapce_dir):
    os.mkdir(work_sapce_dir)
annotation_dir = os.path.join(work_sapce_dir, "Annotations/")
if not os.path.isdir(annotation_dir):
    os.mkdir(annotation_dir)
clear_hidden_files(annotation_dir)
image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
if not os.path.isdir(image_dir):
    os.mkdir(image_dir)
clear_hidden_files(image_dir)
yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/")
if not os.path.isdir(yolo_labels_dir):
    os.mkdir(yolo_labels_dir)
clear_hidden_files(yolo_labels_dir)
yolov5_images_dir = os.path.join(data_base_dir, "images/")
if not os.path.isdir(yolov5_images_dir):
    os.mkdir(yolov5_images_dir)
clear_hidden_files(yolov5_images_dir)
yolov5_labels_dir = os.path.join(data_base_dir, "labels/")
if not os.path.isdir(yolov5_labels_dir):
    os.mkdir(yolov5_labels_dir)
clear_hidden_files(yolov5_labels_dir)
yolov5_images_train_dir = os.path.join(yolov5_images_dir, "train/")
if not os.path.isdir(yolov5_images_train_dir):
    os.mkdir(yolov5_images_train_dir)
clear_hidden_files(yolov5_images_train_dir)
yolov5_images_test_dir = os.path.join(yolov5_images_dir, "val/")
if not os.path.isdir(yolov5_images_test_dir):
    os.mkdir(yolov5_images_test_dir)
clear_hidden_files(yolov5_images_test_dir)
yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, "train/")
if not os.path.isdir(yolov5_labels_train_dir):
    os.mkdir(yolov5_labels_train_dir)
clear_hidden_files(yolov5_labels_train_dir)
yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, "val/")
if not os.path.isdir(yolov5_labels_test_dir):
    os.mkdir(yolov5_labels_test_dir)
clear_hidden_files(yolov5_labels_test_dir)

train_file = open(os.path.join(wd, "yolov5_train.txt"), 'w')
test_file = open(os.path.join(wd, "yolov5_val.txt"), 'w')
train_file.close()
test_file.close()
train_file = open(os.path.join(wd, "yolov5_train.txt"), 'a')
test_file = open(os.path.join(wd, "yolov5_val.txt"), 'a')
list_imgs = os.listdir(image_dir)  # list image files
prob = random.randint(1, 100)
print("Probability: %d" % prob)
for i in range(0, len(list_imgs)):
    path = os.path.join(image_dir, list_imgs[i])
    if os.path.isfile(path):
        image_path = image_dir + list_imgs[i]
        voc_path = list_imgs[i]
        (nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
        (voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
        annotation_name = nameWithoutExtention + '.xml'
        annotation_path = os.path.join(annotation_dir, annotation_name)
        label_name = nameWithoutExtention + '.txt'
        label_path = os.path.join(yolo_labels_dir, label_name)
    prob = random.randint(1, 100)
    print("Probability: %d" % prob)
    if (prob < TRAIN_RATIO):  # train dataset
        if os.path.exists(annotation_path):
            train_file.write(image_path + '\n')
            convert_annotation(nameWithoutExtention)  # convert label
            copyfile(image_path, yolov5_images_train_dir + voc_path)
            copyfile(label_path, yolov5_labels_train_dir + label_name)
    else:  # test dataset
        if os.path.exists(annotation_path):
            test_file.write(image_path + '\n')
            convert_annotation(nameWithoutExtention)  # convert label
            copyfile(image_path, yolov5_images_test_dir + voc_path)
            copyfile(label_path, yolov5_labels_test_dir + label_name)
train_file.close()
test_file.close()
5.训练与测试

遵照着上述博客即可,YOLOV6你找不到博客中的yaml文件,随便复制一个yaml参照博客格式就好

后话:

mac真的不推荐做这个,没有核心显卡(第二次让我感受到我的mac pro竟然还有风扇),速度很慢。如果认真学习这个的,可以使用此博客感受一下(不到半天就能做完,当然直接使用YOLO官方感受更好),项目就不放出来了,希望同学校的人不会看到这篇博客。

标签:yolov5,检测,物体,labels,train,半天,path,os,dir
From: https://www.cnblogs.com/Argilgamesh/p/16652639.html

相关文章