首页 > 其他分享 >Hadoop-基础知识面试题

Hadoop-基础知识面试题

时间:2023-01-30 00:13:15浏览次数:56  
标签:HDFS 面试题 文件 Hadoop 基础知识 map NameNode Map 数据

1、Hadoop集群的最主要瓶颈

磁盘IO

 

2、Hadoop三大组件

(1)、HDFS

HDFS(Hadoop Distributed File System)是 Hadoop 项目的核心子项目,主要负责集群数据的存储与读取,HDFS 是一个主/从(Master/Slave) 体系结构的分布式文件系统。HDFS 支持传统的层次型文件组织结构,用户或者应用程序可以创建目录,然后将文件保存在这些目录中。文件系统名字空间的层次结构和大多数现有的文件系统类似,可以通过文件路径对文件执行创建、读取、更新和删除操作。但是由于分布式存储的性质,它又和传统的文件系统有明显的区别。

HDFS优点:

高容错性。HDFS上传的数据自动保存多个副本,可以通过增加副本的数据来增加它的容错性。如果某一个副本丢失,HDFS 会复制其他机器上的副本,而我们不必关注它的实现。

适合大数据的处理。HDFS 能够处理 GB、TB 甚至 PB 级别的数据,规模达百万,数量非常大。(1PB=1024TB、1TB=1014GB)

流式数据访问。HDFS 以流式数据访问模式来存储超大文件,一次写入,多次读取,即文件一旦写入,则不能修改,只能增加。这样可以保持数据的一致性。

(2)、MapReduce

MapReduce 是 Hadoop 核心计算框架,适用于大规模数据集(大于1TB)并行运算的编程模型,包括 Map(映射)和 Reduce(规约) 两部分。

当启动一个 MapReduce 任务时,Map 端会读取 HDFS 上的数据,将数据映射成所需要的键值对类型并传到 Reduce 端。Reduce 端接收 Map 端传过来的键值对类型的数据,根据不同键进行分组,对每一组键相同的数据进行处理,得到新的键值对并输出到 HDFS,这就是 MapReduce 的核心思想。

一个完整的 MapReduce 过程包含数据的输入与分片、Map 阶段数据处理、Reduce 阶段数据处理、数据输出等阶段:

  • 读取输入数据。MapReduce 过程中的数据是从 HDFS 分布式文件系统中读取的。文件在上传到 HDFS 时,一般按照 128MB 分成了几个数据块,所以在运行 MapReduce 程序时,每个数据块都会生成一个 Map,但是也可以通过重新设置文件分片大小调整 Map 的个数,在运行 MapReduce 时会根据所设置的分片大小对文件重新分割(Split),一个分片大小的数据块就会对应一个Map。
  • Map 阶段。程序有一个或多个 Map,由默认存储或分片个数决定。针对 Map 阶段,数据以键值对的形式读入,键的值一般为每行首字符与文件最初始位置的偏移量,即中间所隔字符个数,值为这一行的数据记录。根据需求对键值对进行处理,映射成新的键值对,将新的键值对传到 Reduce 端。
  • Shuffle/Sort 阶段:此阶段是指从 Map 输出开始,传送 Map 输出到 Reduce 作为输入的过程。该过程会将同一个 Map 中输出的键相同的数据先进行一步整合,减少传输的数据量,并且在整合后将数据按照键排序。
  • Reduce 阶段:Reduce 任务也可以有多个,按照 Map 阶段设置的数据分区确定,一个分区数据被一个 Reduce 处理。针对每一个 Reduce 任务,Reduce 会接收到不同 Map 任务传来的数据,并且每个 Map 传来的数据都是有序的。一个 Reduce 任务中的每一次处理都是针对所有键相同的数据,对数据进行规约,以新的键值对输出到 HDFS。

(3)、Yarn

Hadoop 的 MapReduce 架构称为 YARN(Yet Another Resource Negotiator,另一种资源协调者),是效率更高的资源管理核心。

YARN 主要包含三大模块:Resource Manager(RM)、Node Manager(NM)、Application Master(AM):

  • Resource Manager 负责所有资源的监控、分配和管理;
  • Application Master 负责每一个具体应用程序的调度和协调;
  • Node Manager 负责每一个节点的维护。

 

3、Hadoop生态圈的组件并做简要描述

1)Zookeeper:是一个开源的分布式应用程序协调服务,基于zookeeper可以实现同步服务,配置维护,命名服务。

2)Flume:一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。

3)Hbase:是一个分布式的、面向列的开源数据库, 利用Hadoop HDFS作为其存储系统。

4)Hive:基于Hadoop的一个数据仓库工具,可以将结构化的数据档映射为一张数据库表,并提供简单的sql 查询功能,可以将sql语句转换为MapReduce任务进行运行。

5)Sqoop:将一个关系型数据库中的数据导进到Hadoop的 HDFS中,也可以将HDFS的数据导进到关系型数据库中。

 

4、HDFS的启动过程

1)、加载文件的元信息。

2)、加载日志文件。

3)、设置检查点。

4)、进入安全模式。

作用是:检查数据块的副本率,冗余度是否达到要求。

 

5、请列出正常工作的Hadoop集群中Hadoop都分别需要启动哪些进程,它们的作用分别是什么?

1)NameNode:它是hadoop中的主服务器,管理文件系统名称空间和对集群中存储的文件的访问,保存有metadate。

2)SecondaryNameNode:它不是namenode的冗余守护进程,而是提供周期检查点和清理任务。帮助NN合并editslog,减少NN启动时间。

3)DataNode:它负责管理连接到节点的存储(一个集群中可以有多个节点)。每个存储数据的节点运行一个datanode守护进程。

4)ResourceManager(JobTracker):JobTracker负责调度DataNode上的工作。每个DataNode有一个TaskTracker,它们执行实际工作。

5)NodeManager:(TaskTracker)执行任务。

6)DFSZKFailoverController:高可用时它负责监控NN的状态,并及时的把状态信息写入ZK。它通过一个独立线程周期性的调用NN上的一个特定接口来获取NN的健康状态。FC也有选择谁作为Active NN的权利,因为最多只有两个节点,目前选择策略还比较简单(先到先得,轮换)。

7)JournalNode:高可用情况下存放namenode的editlog文件。

 

6、HDFS的联盟(Federation)和HA的区别:

(1)、联盟是有两个NameNode,并且都是active状态;HA也有两个,不过其中有一个是standby一个是active状态。

(2)、HA需要借助ZK来实现,而Federation不需要,Federation能让缓存更多的元信息。

(3)、HA的好处是:①负载均衡。②失败迁移。

7、负责HDFS数据存储的是哪一部分?HDFS 中的 block 默认保存几份?

DataNode负责数据存储,默认保存3份

 

8、HDFS组成原理

1、HDFS的架构

我们可以看到在这个架构中有一个NameNode和几个DataNode还有一个SecondaryNameNode,下面我们分别来阐述一下它们各自的作用。

2、NameNode:

(1)、加载fsimag和edits文件到内存中。

ps:fsimag文件是HDFS元信息文件,edits文件是记录操作日志文件。fsimage文件和edits文件在一起,记录了数据块的位置和冗余信息。
(2)、客户端向NameNode发起增删改查的请求。

(3)、NameNode记录操作到内存中,更新滚动日志。

(4)、NameNode在内存中对数据进行增删改查。

3、DataNode:

(1)、保存数据块,默认是128M,Hadoop1.0默认是64M。

(2)、存储在磁盘上,包括两个文件,一个数据本身,一个是元数据包括数据块长度,块数据校验和以及时间戳。

(3)、DataNode启动后向NameNode注册,通过后,周期性(64分钟)的向NameNode上报所有的信息。

(4)、心跳是三秒一次,心跳返回结果包括NameNode给该DataNode的命令。如果十分钟都没有收到该DataNode的心跳,则该节点不可用。

4、SecondaryNameNode:

(1)、向NameNode询问是否需要checkPoint。

ps:检查点触发的条件是:①时间快到了,60分钟。②日志文件edits中数据满了,64M。

(2)、请求执行checkPoint。

(3)、拷贝edits文件和fsimag文件到SecondaryNameNode中。

(4)、将拷贝过来的edits文件和fsimag文件进行合并。

(5)、生成新的fsimage命名为fsimage.chkpoint。

(6)、将fsimage.chkpoint拷贝到NameNode中去。

(7)、重新命名生成fsimage。

 

5、NameNode、JobTracker、DataNode、TaskTracker

(1)、hadoop的集群是基于master/slave模式,namenode和jobtracker属于master,datanode和tasktracker属于slave,master只有一个,而slave有多个。
(2)、SecondaryNameNode内存需求和NameNode在一个数量级上,所以通常secondary NameNode(运行在单独的物理机器上)和 NameNode 运行在不同的机器上。
(3)、JobTracker对应于NameNode,TaskTracker对应于DataNode。
(4)、DataNode和NameNode是针对数据存放来而言的。JobTracker和TaskTracker是对于MapReduce执行而言的。

ps:mapreduce中几个主要概念,mapreduce 整体上可以分为这么几条执行线索:jobclient,JobTracker与TaskTracker。
1)JobClient会在用户端通过JobClient类将已经配置参数打包成jar文件的应用存储到hdfs,并把路径提交到Jobtracker,然后由JobTracker创建每一个Task(即 MapTask 和 ReduceTask)并将它们分发到各个TaskTracker服务中去执行。
2)JobTracker是一master服务,软件启动之后JobTracker接收Job,负责调度Job的每一个子任务。task运行于TaskTracker上,并监控它们,如果发现有失败的task就重新运行它。一般情况应该把JobTracker 部署在单独的机器上。
3)TaskTracker是运行在多个节点上的slaver服务。TaskTracker主动与JobTracker通信,接收作业,并负责直接执行每一个任务。TaskTracker 都需要运行在HDFS的DataNode上。

JobTracker的Recover机制

如果设置了JobTracker Recover机制,那么在JobTracker重启的时候会触发Recover,在重启之前,histroy logs中会记录各个作业的运行状态,待JobTracker重启的时候,JobTracker会自动提交这些作业,并只对未完成的task进行重新调度。

 

9、SecondaryNameNode的目的是什么?

目的使帮助NameNode合并编辑日志,减少NameNode 启动时间。

 

10、hadoop的块大小,从哪个版本开始是128M

Hadoop1.x都是64M,hadoop2.x开始都是128M。

 

11、HDFS的存储机制

HDFS存储机制,包括HDFS的写入数据过程和读取数据过程两部分。

HDFS写数据过程

  1)客户端通过Distributed FileSystem模块向NameNode请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。

  2)NameNode返回是否可以上传。

  3)客户端请求第一个 block上传到哪几个datanode服务器上。

  4)NameNode返回3个datanode节点,分别为dn1、dn2、dn3。

  5)客户端通过FSDataOutputStream模块请求dn1上传数据,dn1收到请求会继续调用dn2,然后dn2调用dn3,将这个通信管道建立完成。

  6)dn1、dn2、dn3逐级应答客户端。

  7)客户端开始往dn1上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,dn1收到一个packet就会传给dn2,dn2传给dn3;

dn1每传一个packet会放入一个应答队列等待应答。

  8)当一个block传输完成之后,客户端再次请求NameNode上传第二个block的服务器。(重复执行3-7步)。

 

  HDFS读数据过程

  1)客户端通过Distributed FileSystem向NameNode请求下载文件,NameNode通过查询元数据,找到文件块所在的DataNode地址。

  2)挑选一台DataNode(就近原则,然后随机)服务器,请求读取数据。

  3)DataNode开始传输数据给客户端(从磁盘里面读取数据输入流,以packet为单位来做校验)。

  4)客户端以packet为单位接收,先在本地缓存,然后写入目标文件。

 

12、secondary namenode工作机制

1)第一阶段:NameNode启动

  (1)第一次启动NameNode格式化后,创建fsimage和edits文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存。

  (2)客户端对元数据进行增删改的请求。

  (3)NameNode记录操作日志,更新滚动日志。

  (4)NameNode在内存中对数据进行增删改查。

2)第二阶段:Secondary NameNode工作

  (1)Secondary NameNode询问NameNode是否需要checkpoint。直接带回NameNode是否检查结果。

  (2)Secondary NameNode请求执行checkpoint。

  (3)NameNode滚动正在写的edits日志。

  (4)将滚动前的编辑日志和镜像文件拷贝到Secondary NameNode。

  (5)Secondary NameNode加载编辑日志和镜像文件到内存,并合并。

  (6)生成新的镜像文件fsimage.chkpoint。

  (7)拷贝fsimage.chkpoint到NameNode。

  (8)NameNode将fsimage.chkpoint重新命名成fsimage。

 

NameNode与SecondaryNameNode 的区别与联系?

1)区别

  (1)NameNode负责管理整个文件系统的元数据,以及每一个路径(文件)所对应的数据块信息。

  (2)SecondaryNameNode主要用于定期合并命名空间镜像和命名空间镜像的编辑日志。

2)联系:

  (1)SecondaryNameNode中保存了一份和namenode一致的镜像文件(fsimage)和编辑日志(edits)。

  (2)在主namenode发生故障时(假设没有及时备份数据),可以从SecondaryNameNode恢复数据。

 

13、HDFS组成架构

架构主要由四个部分组成,分别为HDFS Client、NameNode、DataNode和Secondary NameNode。下面我们分别介绍这四个组成部分。

1)Client:就是客户端。

  (1)文件切分。文件上传HDFS的时候,Client将文件切分成一个一个的Block,然后进行存储;

  (2)与NameNode交互,获取文件的位置信息;

  (3)与DataNode交互,读取或者写入数据;

  (4)Client提供一些命令来管理HDFS,比如启动或者关闭HDFS;

  (5)Client可以通过一些命令来访问HDFS;

2)NameNode:就是Master,它是一个主管、管理者。

  (1)管理HDFS的名称空间;

  (2)管理数据块(Block)映射信息;

  (3)配置副本策略;

  (4)处理客户端读写请求。

3)DataNode:就是Slave。NameNode下达命令,DataNode执行实际的操作。

  (1)存储实际的数据块;

  (2)执行数据块的读/写操作。

4)Secondary NameNode:并非NameNode的热备。当NameNode挂掉的时候,它并不能马上替换NameNode并提供服务。

  (1)辅助NameNode,分担其工作量;

  (2)定期合并Fsimage和Edits,并推送给NameNode;

  (3)在紧急情况下,可辅助恢复NameNode。

 

14、HAnamenode 是如何工作的?

ZKFailoverController主要职责

  1)健康监测:周期性的向它监控的NN发送健康探测命令,从而来确定某个NameNode是否处于健康状态,如果机器宕机,心跳失败,那么zkfc就会标记它处于一个不健康的状态。

  2)会话管理:如果NN是健康的,zkfc就会在zookeeper中保持一个打开的会话,如果NameNode同时还是Active状态的,那么zkfc还会在Zookeeper中占有一个类型为短暂类型的znode,当这个NN挂掉时,这个znode将会被删除,然后备用的NN,将会得到这把锁,升级为主NN,同时标记状态为Active。

  3)当宕机的NN新启动时,它会再次注册zookeper,发现已经有znode锁了,便会自动变为Standby状态,如此往复循环,保证高可靠,需要注意,目前仅仅支持最多配置2个NN。

  4)master选举:如上所述,通过在zookeeper中维持一个短暂类型的znode,来实现抢占式的锁机制,从而判断那个NameNode为Active状态

 

15、谈谈Hadoop序列化和反序列化及自定义bean对象实现序列化?

1)序列化和反序列化

  (1)序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储(持久化)和网络传输。

  (2)反序列化就是将收到字节序列(或其他数据传输协议)或者是硬盘的持久化数据,转换成内存中的对象。

  (3)Java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,header,继承体系等),不便于在网络中高效传输。所以,hadoop自己开发了一套序列化机制(Writable),精简、高效。

2)自定义bean对象要想序列化传输步骤及注意事项:

  (1)必须实现Writable接口

  (2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造

  (3)重写序列化方法

  (4)重写反序列化方法

  (5)注意反序列化的顺序和序列化的顺序完全一致

  (6)要想把结果显示在文件中,需要重写toString(),且用"\t"分开,方便后续用

  (7)如果需要将自定义的bean放在key中传输,则还需要实现comparable接口,因为mapreduce框中的shuffle过程一定会对key进行排序

 

16、HDFS小文件优化方法

(1)、Hadoop Archive:将小文件放入HDFS块中的文件归档工具,减少NameNode内存的使用。

(2)、采用SequenceFile格式。

(3)、CombineFileInputFormat:将多个文件合并成一个单独的split。

(4)、JVM重用:一个map运行一个JVM,一个map运行完毕,jvm会继续运行其他map。

 

17、在一个运行的Hadoop 任务中,什么是InputSplit?

FileInputFormat源码解析(input.getSplits(job))

(1)找到你数据存储的目录。

(2)开始遍历处理(规划切片)目录下的每一个文件。

(3)遍历第一个文件ss.txt。

  a)获取文件大小fs.sizeOf(ss.txt);。

  b)计算切片大小computeSliteSize(Math.max(minSize,Math.min(maxSize,blocksize)))=blocksize=128M。

  c)默认情况下,切片大小=blocksize。

  d)开始切,形成第1个切片:ss.txt—0:128M 第2个切片ss.txt—128:256M 第3个切片ss.txt—256M:300M(每次切片时,都要判断切完剩下的部分是否大于块的1.1倍,不大于1.1倍就划分一块切片)。

  e)将切片信息写到一个切片规划文件中。

  f)整个切片的核心过程在getSplit()方法中完成。

  g)数据切片只是在逻辑上对输入数据进行分片,并不会再磁盘上将其切分成分片进行存储。InputSplit只记录了分片的元数据信息,比如起始位置、长度以及所在的节点列表等。

  h)注意:block是HDFS上物理上存储的存储的数据,切片是对数据逻辑上的划分。

(4)提交切片规划文件到yarn上,yarn上的MrAppMaster就可以根据切片规划文件计算开启maptask个数。

 

18、如何判定一个job的map和reduce的数量?

1)map数量

  splitSize=max{minSize,min{maxSize,blockSize}}

  map数量由处理的数据分成的block数量决定default_num = total_size / split_size;

2)reduce数量

  reduce的数量job.setNumReduceTasks(x);x 为reduce的数量。不设置的话默认为 1。

 

19、 MaptaskReduceTask的个数由什么决定?

1MapTask的个数由什么决定

(1)、一个job的map阶段MapTask个数,由客户端提交的job的切片个数决定。

(2)、每一个切片分配一个MapTask。

(3)、切片大小默认=blocksize。

(4)、切片时针对每一个文件单独切片,不考虑数据集整体。
(2)ReduceTask个数由什么决定

一个job的reduceTask数量是通过job.setNumReduceTasks(x)来设置的;x 为reduce的数量。不设置的话默认为 1。

 

20、MapTask和ReduceTask工作机制

MapTask工作机制

Read阶段-->Map阶段-->Collect阶段-->Spill溢写阶段-->Combiner阶段

(1)Read阶段:Map Task通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value。

(2)Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。

(3)Collect收集阶段:在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。

(4)Spill阶段:即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。

(5)Combine阶段:当所有数据处理完成后,MapTask对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。

 

ReduceTask工作机制

Copy阶段-->Merge阶段-->Sort阶段-->Reduce阶段

 

(1)Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。

(2)Merge阶段:在远程拷贝数据的同时,ReduceTask启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。

(3)Sort阶段:按照MapReduce语义,用户编写reduce()函数输入数据是按key进行聚集的一组数据。为了将key相同的数据聚在一起,Hadoop采用了基于排序的策略。 由于各个MapTask已经实现对自己的处理结果进行了局部排序,因此,ReduceTask只需对所有数据进行一次归并排序即可。

(4)Reduce阶段:reduce()函数将计算结果写到HDFS上。

 

21、描述mapReduce有几种排序及排序发生的阶段

1)排序的分类:

  (1)部分排序:

    MapReduce根据输入记录的键对数据集排序。保证输出的每个文件内部排序。

  (2)全排序:

    如何用Hadoop产生一个全局排序的文件?最简单的方法是使用一个分区。但该方法在处理大型文件时效率极低,因为一台机器必须处理所有输出文件,从而完全丧失了MapReduce所提供的并行架构。

    替代方案:首先创建一系列排好序的文件;其次,串联这些文件;最后,生成一个全局排序的文件。主要思路是使用一个分区来描述输出的全局排序。例如:可以为待分析文件创建3个分区,在第一分区中,记录的单词首字母a-g,第二分区记录单词首字母h-n, 第三分区记录单词首字母o-z。

  (3)辅助排序:(GroupingComparator分组)

    Mapreduce框架在记录到达reducer之前按键对记录排序,但键所对应的值并没有被排序。甚至在不同的执行轮次中,这些值的排序也不固定,因为它们来自不同的map任务且这些map任务在不同轮次中完成时间各不相同。一般来说,大多数MapReduce程序会避免让reduce函数依赖于值的排序。但是,有时也需要通过特定的方法对键进行排序和分组等以实现对值的排序。

  (4)二次排序:

    在自定义排序过程中,如果compareTo中的判断条件为两个即为二次排序。

2)自定义排序WritableComparable

  bean对象实现WritableComparable接口重写compareTo方法,就可以实现排序

    @Override

    public int compareTo(FlowBean o) {

      // 倒序排列,从大到小

      return this.sumFlow > o.getSumFlow() ? -1 : 1;

    }

3)排序发生的阶段:

  (1)一个是在map side发生在spill后partition前。

  (2)一个是在reduce side发生在copy后 reduce前。

 

22、描述mapReduce中shuffle阶段的工作流程,如何优化shuffle阶段

Shuffle机制

MapReduce保证每个reducer的输入都是按键有序排列的,系统执行排序的过程(即将map输出作为输入传给reducer)称为shuffle。

 

 

 

如何优化shuffle

(1)、Map端的优化:

1)kvbuffer,默认是100M,可以通过参数mapreduce.task.io.sort.mb来修改,一般不修改。

2)缓冲区阈值,一般是80%,可以通过mapreduce.map.sort.spill.percent来修改。

3)合并spill文,mapreduce.task.io.sort.factor属性配置每次最多合并多少个文件,默认为10,即一次最多合并10个spill文件.如果spill文件数量大于mapreduce.map.combiner.minspills配置的数,则在合并文件写入之前,会再次运行combiner。如果spill文件数量太少,运行combiner的收益可能小于调用的代价。

4)、对map输出进行压缩,在数据量大的时候,可以对map输出进行压缩,要启用压缩,将mapreduce.map.output.compress设为true,并使用mapreduce.map.output.compress.codec设置使用的压缩算法。

(2)、Reduce端优化:

1)、copy线程数量。copy是用来从map任务中提取数据的,默认为5个copy线程,可以通是mapreduce.reduce.shuffle.parallelcopies配置。

2)、内存分配:如果能够让所有数据都保存在内存中,可以达到最佳的性能。通常情况下,内存都保留给reduce函数,但是如果reduce函数对内存需求不是很高,将mapreduce.reduce.merge.inmem.threshold(触发合并的map输出文件数)设为0,mapreduce.reduce.input.buffer.percent(用于保存map输出文件的堆内存比例)设为1.0。

 

23、描述mapReduce中combiner的作用是什么,一般使用情景,哪些情况不需要,及和reduce的区别?

1)Combiner的意义就是对每一个maptask的输出进行局部汇总,以减小网络传输量。

2)Combiner能够应用的前提是不能影响最终的业务逻辑,而且,Combiner的输出kv应该跟reducer的输入kv类型要对应起来。

3)Combiner和reducer的区别在于运行的位置。

  Combiner是在每一个maptask所在的节点运行;

  Reducer是接收全局所有Mapper的输出结果。

 

24、如果没有定义partitioner,那数据在被送达reducer前是如何被分区的?

  如果没有自定义的 partitioning,则默认的 partition 算法,即根据每一条数据的 key 的 hashcode 值摸运算(%)reduce 的数量,得到的数字就是“分区号“。

 

25、MapReduce 出现单点负载大,怎么负载平衡?

  通过Partitioner实现

 

34、Hadoop的资源调度器

(1)默认的调度器FIFO

  Hadoop中默认的调度器,它先按照作业的优先级高低,再按照到达时间的先后选择被执行的作业。

(2)计算能力调度器Capacity Scheduler

  支持多个队列,每个队列可配置一定的资源量,每个队列采用FIFO调度策略,为了防止同一个用户的作业独占队列中的资源,该调度器会对同一用户提交的作业所占资源量进行限定。调度时,首先按以下策略选择一个合适队列:计算每个队列中正在运行的任务数与其应该分得的计算资源之间的比值,选择一个该比值最小的队列;然后按以下策略选择该队列中一个作业:按照作业优先级和提交时间顺序选择,同时考虑用户资源量限制和内存限制。

(3)公平调度器Fair Scheduler

  同计算能力调度器类似,支持多队列多用户,每个队列中的资源量可以配置,同一队列中的作业公平共享队列中所有资源。

总结

FIFO Scheduler:按照顺序执行,不适合共享集群。

Capacity Sheduler:专门的队列来运行小任务,为小任务专门预设了一定的资源,导致大任务的执行时间回落后使用FIFO调度器的时间。

Fair Scheduler:公平调度,每个来的任务都会获得的相等的资源。

 

26、MapReduce 怎么实现 TopN?

  可以自定义groupingcomparator,对结果进行最大值排序,然后再reduce输出时,控制只输出前n个数。就达到了topn输出的目的。

 

27、Hadoop的缓存机制(Distributedcache)

  分布式缓存一个最重要的应用就是在进行join操作的时候,如果一个表很大,另一个表很小,我们就可以将这个小表进行广播处理,即每个计算节点上都存一份,然后进行map端的连接操作,经过我的实验验证,这种情况下处理效率大大高于一般的reduce端join,广播处理就运用到了分布式缓存的技术。

  DistributedCache将拷贝缓存的文件到Slave节点在任何Job在节点上执行之前,文件在每个Job中只会被拷贝一次,缓存的归档文件会被在Slave节点中解压缩。将本地文件复制到HDFS中去,接着Client会通过addCacheFile() 和addCacheArchive()方法告诉DistributedCache在HDFS中的位置。当文件存放到文地时,JobClient同样获得DistributedCache来创建符号链接,其形式为文件的URI加fragment标识。当用户需要获得缓存中所有有效文件的列表时,JobConf 的方法 getLocalCacheFiles() 和getLocalArchives()都返回一个指向本地文件路径对象数组。

 

28、如何使用mapReduce实现两个表的join?

  1)reduce side join : 在map阶段,map函数同时读取两个文件File1和File2,为了区分两种来源的key/value数据对,对每条数据打一个标签(tag),比如:tag=0 表示来自文件File1,tag=2 表示来自文件File2。

  2)map side join : Map side join 是针对以下场景进行的优化:两个待连接表中,有一个表非常大,而另一个表非常小,以至于小表可以直接存放到内存中。这样,我们可以将小表复制多份,让每个map task 内存中存在一份(比如存放到hash table 中),然后只扫描大表:对于大表中的每一条记录key/value,在hash table 中查找是否有相同的key 的记录,如果有,则连接后输出即可。

 

29、什么样的计算不能用mr来提速?

  1)数据量很小。

  2)繁杂的小文件。

  3)索引是更好的存取机制的时候。

  4)事务处理。

  5)只有一台机器的时候。

 

30、ETL是哪三个单词的缩写

ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。

 

31、简述hadoop1与hadoop2 的架构异同

  1)加入了yarn解决了资源调度的问题。

  2)加入了对zookeeper的支持实现比较可靠的高可用。

 

32、为什么会产生 yarn它解决了什么问题,有什么优势?

(1)、解决了运行的用户程序与yarn框架完全解耦。

(2)、yarn上面可以运行各种分布式框架,比如mapreduce、storm、spark。

(3)、MR一旦运行失败,ResourceManager负责重新启动,最多重启次数可由用户设置,默认是两次。

(4)、Task周期性的向MRAppMaster汇报心跳,一旦Task挂掉,则MRAppMaster将为之重新申请资源,默认是四次。

33、HDFS的数据压缩算法?

  Hadoop中常用的压缩算法有bzip2、gzip、lzo、snappy,其中lzo、snappy需要操作系统安装native库才可以支持。企业开发用的比较多的是snappy。

压缩的的位置在:map的输入,mapper的输出,压缩reducer的输出。

35、MapReduce 2.0 容错性(☆☆☆☆☆)

1)MRAppMaster容错性

  一旦运行失败,由YARN的ResourceManager负责重新启动,最多重启次数可由用户设置,默认是2次。一旦超过最高重启次数,则作业运行失败。

2)Map Task/Reduce

  Task周期性向MRAppMaster汇报心跳;一旦Task挂掉,则MRAppMaster将为之重新申请资源,并运行之。最多重新运行次数可由用户设置,默认4次。

 

36、mapreduce推测执行算法及原理(☆☆☆☆☆)

1)作业完成时间取决于最慢的任务完成时间

  一个作业由若干个Map 任务和Reduce 任务构成。因硬件老化、软件Bug 等,某些任务可能运行非常慢。

  典型案例:系统中有99%的Map任务都完成了,只有少数几个Map老是进度很慢,完不成,怎么办?

2)推测执行机制

  发现拖后腿的任务,比如某个任务运行速度远慢于任务平均速度。为拖后腿任务启动一个备份任务,同时运行。谁先运行完,则采用谁的结果。

3)不能启用推测执行机制情况

  (1)任务间存在严重的负载倾斜;

  (2)特殊任务,比如任务向数据库中写数据。

4)算法原理

  假设某一时刻,任务T的执行进度为progress,则可通过一定的算法推测出该任务的最终完成时刻estimateEndTime。另一方面,如果此刻为该任务启动一个备份任务,则可推断出它可能的完成时刻estimateEndTime,于是可得出以下几个公式: estimateEndTime=estimatedRunTime+taskStartTime  estimatedRunTime=(currentTimestamp-taskStartTime)/progress

estimateEndTime= currentTimestamp+averageRunTime

  其中,currentTimestamp为当前时刻;taskStartTime为该任务的启动时刻;averageRunTime为已经成功运行完成的任务的平均运行时间。这样,MRv2总是选择(estimateEndTime- estimateEndTime·)差值最大的任务,并为之启动备份任务。为了防止大量任务同时启动备份任务造成的资源浪费,MRv2为每个作业设置了同时启动的备份任务数目上限。

  推测执行机制实际上采用了经典的算法优化方法:以空间换时间,它同时启动多个相同任务处理相同的数据,并让这些任务竞争以缩短数据处理时间。显然,这种方法需要占用更多的计算资源。在集群资源紧缺的情况下,应合理使用该机制,争取在多用少量资源的情况下,减少作业的计算时间。

 

37Yarn的基本组成

yarn的基本组成:resourceManager、nodeManger、applicationMaster、container

1、resourceManager:主要负责资源的调度和应用程序的管理。

①调度器:调度器是将系统中的资源分配给各个正在运行的应用程序。

②应用程序管理:负责管理所有applicationMaster。

2、nodeManager:定时告诉resourceManger,node节点的资源使用情况;任务的启动和终止。

3、applicationMaster:向resourceManger请求资源,监听任务的执行进度。

4、container:资源的抽象(cpu,内存的信息),当applicationMaster向recourceManger请求资源的时候,就是以container抽象资源的形式返回,限制资源的使用情况。

5、执行流程:

 

 

38、MapReduce的调优

1、资源相关参数:

1)、mapreduce.map.memory.mb 一个Map Task可使用的资源上限(单位:MB),默认为1024。如果Map Task实际使用的资源量超过该值,则会被强制杀死。

2)、mapreduce.reduce.memory.mb 一个Reduce Task可使用的资源上限(单位:MB),默认为1024。如果Reduce Task实际使用的资源量超过该值,则会被强制杀死。

3)、mapreduce.map.java.opts Map Task的JVM参数,你可以在此配置默认的java heap size等参数, e.g."-Xmx1024m -verbose:gc -Xloggc:/tmp/@[email protected]" (@taskid@会被Hadoop框架自动换为相应的taskid), 默认值: ""
4)、mapreduce.reduce.java.opts Reduce Task的JVM参数,你可以在此配置默认的java heap size等参数, e.g."-Xmx1024m -verbose:gc -Xloggc:/tmp/@[email protected]", 默认值: ""
5)、mapreduce.map.cpu.vcores 每个Map task可使用的最多cpu core数目, 默认值: 1
6)、mapreduce.reduce.cpu.vcores 每个Reduce task可使用的最多cpu core数目, 默认值: 1

7)、yarn.scheduler.maximum-allocation-mb 8192 给应用程序container分配的最大内存

8)、yarn.scheduler.minimum-allocation-mb 1024 给应用程序container分配的最小内存

2、容错相关参数:

1)、mapreduce.map.maxattempts 每个Map Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

2)、mapreduce.reduce.maxattempts 每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

3)、mapreduce.map.failures.maxpercent 当失败的Map Task失败比例超过该值为,整个作业则失败,默认值为0. 如果你的应用程序允许丢弃部分输入数据,则该该值设为一个大于0的值,比如5,表示如果有低于5%的Map Task失败(如果一个Map Task重试次数超过mapreduce.map.maxattempts,则认为这个Map Task失败,其对应的输入数据将不会产生任何结果),整个作业扔认为成功。

4)、mapreduce.reduce.failures.maxpercent 当失败的Reduce Task失败比例超过该值为,整个作业则失败,默认值为0。

5)、mapreduce.task.timeout Task超时时间,经常需要设置的一个参数,该参数表达的意思为:如果一个task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该task处于block状态,可能是卡住了,也许永远会卡主,为了防止因为用户程序永远block住不退出,则强制设置了一个该超时时间(单位毫秒),默认是300000。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是“AttemptID:attempt_14267829456721_123456_m_000224_0 Timed out after 300 secsContainer killed by the ApplicationMaster.”。

 

 

39、HDFS文件的上传

(1)、客户端发出文件上传的请求。

(2)、客户端创建出DistrbutedSystem。

(3)、DistributedSystem和NameNode建立RPC通信,得到一个NameNode的代理对象。

(4)、请求创建文件的元信息。

(5)、NameNode创建出文件的元信息。元信息包括文件名,文件的大小,路径,数据块数量,数据块分布在DataNode的信息。

(6)、NameNode缓存元信息。

(7)、如果满了就采用LRU置换算法,生成fsimage文件。

(8)、返回给客户端文件的元信息。

(9)、创建输出流。

(10)、上传第一个数据块到DataNode上面去。

(11)、DataNode之间根据冗余信息,进行复制。

(12)、FSDataOutputStream循环上传数据。

 

40、HDFS文件的下载

(1)、客户端发出文件下载的请求。

(2)、客户端创建出DistrbutedSystem。

(3)、DistributedSystem和NameNode建立RPC通信,得到一个NameNode的代理对象。

(4)、得到文件的元信息。

(5)、NameNode在内存中查找文件的元信息。

(6)、在fsimage中查找。

(7)、返回给客户端文件的元信息。

(8)、创建一个输入流。

(9)、下载第一个数据块,多线程下载数据块。

 

标签:HDFS,面试题,文件,Hadoop,基础知识,map,NameNode,Map,数据
From: https://www.cnblogs.com/yeyuzhuanjia/p/17074146.html

相关文章

  • Redis缓存基础知识(一)
    一、基本概念1.Redis:属于开源的、键值对型的数据存储系统。支持网络、可基于内存、可持久化的日志型数据库。它可用作数据库、缓存、消息中间件。2.分析:正因为Redis是......
  • JS基础知识
    1.简单数据类型  1.1字符串型String   1.1.1字符串长度        1.1.2字符串拼接            1.1.3字符串拼接加强 ......
  • 使用docker安装hadoop(已实现)
    1.拉镜像这里推荐第一个dockerpullregistry.cn-hangzhou.aliyuncs.com/hadoop_test/hadoop_base或者dockerpullqianiqan/hadoop_only2.创建容器三个容器的......
  • 【面试题】做了一份前端面试复习计划,保熟~
    前言以前我看到面试贴就直接刷掉的,从不会多看一眼,直到去年9月份我开始准备面试时,才发现很多面试经验贴特别有用,看这些帖子(我不敢称之为文章,怕被杠)的过程中对我的复习思维......
  • 干货|常用的电子元器件基础知识介绍
    电子元器件是电子行业的入门,但是有很多工程师对其还是一知半解,下面沐渥小编为大家介绍一下沐渥科技常用的电子元器件及其基础知识。1、电阻:电阻是电路中使用最多的元器件,因......
  • 异常面试题
    1.异常的处理声明:其实就是程序中遇到异常时,自己不处理,交给其它程序处理throw(在使用throw抛出异常代码的后面,不能书写任意代码)捕获:其实就是在程序中遇到异常时,不......
  • 反射面试题
    1.什么是反射机制,反射机制的优缺点.Java反射机制是在运行过程中,对于任意一个类,都可以知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属......
  • JVM面试题
    1.JVM运行流程首先通过编译把Java代码转换成字节码文件,然后类加载器(ClassLoader)再把字节码文件加载到内存中,放在运行时数据区的方法区内,然后需要特定的命令解析器执......
  • 事务面试题
    1.说下事务的ACID原子性(Atomicity):原子性是指事务是一个不可分割的工作单位,事务中的操作要么都发生,要么都不发生,一致性(Consistency):事务前后数据的完整性必须保持......
  • 通信协议面试题
    1.名词解释IP协议TOC协议UDPIP协议分组交换协议不可靠传输一个数据包自动分成若干小的数据包然后通过网络进行传输TCP协议传输控制协议可靠协议建立在IP协议之......