代码如下
from collections import OrderedDict
import glob
import os
import re
import json
from batchgenerators.utilities.file_and_folder_operations import *
def list_sort_nicely(l):
""" Sort the given list in the way that humans expect.
"""
def tryint(s):
try:
return int(s)
except:
return s
def alphanum_key(s):
""" Turn a string into a list of string and number chunks.
"z23a" -> ["z", 23, "a"]
"""
return [ tryint(c) for c in re.split('([0-9]+)', s) ]
l.sort(key=alphanum_key)
return l
path_originalData = 'xxxx/PycharmProjects/nnUNet/nnUNet_raw/nnUNet_raw_data/Task072_HCC/'
train_image = list_sort_nicely(glob.glob(path_originalData+"imagesTr/*"))
train_label = list_sort_nicely(glob.glob(path_originalData+"labelsTr/*"))
test_image = list_sort_nicely(glob.glob(path_originalData+"imagesTs/*"))
test_label = list_sort_nicely(glob.glob(path_originalData+"labelsTs/*"))
train_image = ["{}".format(item.split('/')[-1]) for item in train_image]
train_label = ["{}".format(item.split('/')[-1]) for item in train_label]
test_image = ["{}".format(item.split('/')[-1]) for item in test_image]
test_label = ["{}".format(item.split('/')[-1]) for item in test_label]
#输出一下目录的情况,看是否成功
print(train_image)
print(train_label)
print(test_image)
print(test_label)
# 自行修改
json_dict = OrderedDict()
json_dict['name'] = "LiverMriTumer"
json_dict['description'] = "nothing"
json_dict['tensorImageSize'] = "3D"
json_dict['reference'] = "ssw"
json_dict['licence'] = "ssw"
json_dict['release'] = "0.0"
json_dict['modality'] = {
"0": "HBP",
# "1" : "T1"
# 将模态信息写在这里
}
json_dict['labels'] = {
"0": "background",
"1": "Tumer",
}
json_dict['numTraining'] = len(train_image)
json_dict['numTest'] = len(test_image)
json_dict['training'] = [{'image': "./imagesTr/%s" % i , "label": "./labelsTr/%s" % i} for i in train_label]
json_dict['test'] = ["./imagesTs/%s" % i for i in test_image]
save_json(json_dict, join(path_originalData, "dataset.json"))
标签:image,nnUNet,label,json,train,dict,test,使用指南
From: https://www.cnblogs.com/xyf9474/p/16651150.html