首页 > 其他分享 >C. Interesting Sequence

C. Interesting Sequence

时间:2023-01-17 11:56:43浏览次数:62  
标签:dots 10 le equality Sequence Interesting Petya test

C. Interesting Sequence

Petya and his friend, robot Petya++, like to solve exciting math problems.

One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation. Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds.

Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer.

Can you solve this difficult problem?

Input

Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows.

The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$).

Output

For every test case, output the smallest possible value of $m$ such that equality holds.

If the equality does not hold for any $m$, print $-1$ instead.

We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$.

Example

input

5
10 8
10 10
10 42
20 16
1000000000000000000 0

output

12
10
-1
24
1152921504606846976

Note

In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$.

In the second example, $10 = 10$, so the answer is $10$.

In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.

 

解题思路

  首先遍历$n$和$x$在二进制下的每一位,用$n_k$来表示数字$n$二进制的第$k$位的数值,当遍历到第$k$位时发现$n_k = 0$,$x_k = 1$,那么就必定无解。因为整个过程都是按位与的运算,如果$n_k = 0$,那么无论与什么数相与得到的结果都是$0$而不可能得到$1$。

  接下来分类讨论:

  1. $n_k = 0$,$x_k = 0$。那么$m$可以取任何数,最终$n_k\ \&\ (n+1)_k\ \& \ \dots\ \&\ m_k = x_k = 0$总是成立。
  2. $n_k = 1$,$x_k = 0$。为了按位与后第$k$位为$0$,那么很明显应该让$n$加上某个数$s$后$(n+s)_{k} = 0$,这样才能有$n_k\ \&\ (n+1)_k\ \&\ \dots\ (n+s)_k\ \&\ \dots\ \&\ m_k = x_k = 0$。很显然为了让$n+s$的第$k$位出现$0$,$s$可以取到无穷大,因此我们来看看$s$最小可以取到多少。可以发现$n$的第$k$位要进位时才由变$1$变$0$,因此只用考虑由$n$的前$k$位所构成的数,即$n\ \%\ {2^{k+1}}$,第$k$位进位后得到的结果为$2^{k+1}$,因此$s$的最小值为$2^{k+1} - n\ \%\ {2^{k+1}}$。
  3. $n_k = 1$,$x_k = 1$。为了按位与后第$k$位始终为$1$,那么在$n \sim m$的数中不能出现第$k$位为$0$的数。一样的,当$n$的第$k$位要进位时才由变$1$变$0$,考虑由$n$的前$k$位所构成的数,即$n\ \%\ {2^{k+1}}$,那么在进位前且第$k$位仍为$1$所能取到的最大值是$2^{k+1}-1$,因此$s$的取值不应超过$2^{k+1}-1 - n\ \%\ {2^{k+1}}$。

  然后对第$2$种情况的所有$s$取个最大值(即找到最大的下界)得到$l$,对第$3$种情况的所有$s$取个最小值(即找到最小的上界)得到$r$。如果$l \leq r$说明有解,那么答案就是$m = n + l$;否则就是无解。

  AC代码如下:

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 typedef long long LL;
 5 
 6 void solve() {
 7     LL n, m;
 8     scanf("%lld %lld", &n, &m);
 9     LL l = 0, r = 9e18;
10     for (int i = 0; i < 60; i++) {    // 1e18的二进制位最多有60位
11         LL x = n % (1ll << i + 1);    // 得到n的前i位所构成的数
12         int a = n >> i & 1, b = m >> i & 1;
13         if (!a && b) {    // n的第k位为0,m的第k位为1,无解
14             printf("-1\n");
15             return;
16         }
17         if (a && !b) l = max(l, (1ll << i + 1) - x);    // 第一种情况
18         else if (a && b) r = min(r, (1ll << i + 1) - 1 - x);    // 第二种情况
19     }
20     printf("%lld\n", l <= r ? n + l : -1);
21 }
22 
23 int main() {
24     int t;
25     scanf("%d", &t);
26     while (t--) {
27         solve();
28     }
29     
30     return 0;
31 }

 

参考资料

  Codeforces Round #843 (Div. 2) C (思维):https://zhuanlan.zhihu.com/p/598221402

标签:dots,10,le,equality,Sequence,Interesting,Petya,test
From: https://www.cnblogs.com/onlyblues/p/17057484.html

相关文章

  • 【多标签文本分类】BERT for Sequence-to-Sequence Multi-Label Text Classification
    ·阅读摘要:  本文在已有的SGM和BERT模型上改进,提出了SGM+BERT模型、混合模型。实验证明SGM+BERT模型收敛比BERT快很多,混合模型的效果最好。·参考文献:  [1]BERTfor......
  • CF280D k-Maximum Subsequence Sum
    CF280Dk-MaximumSubsequenceSumWC现在正在讲网络流,我也来写一题网络流!一开始真想不到这题能费用流。但是\(k\)规模较小告诉我们可以先从一个一个区间贪心做入手。但......
  • HDU 5306 Gorgeous Sequence
    \(HDU\)\(5306\)\(Gorgeous\)\(Sequence\)标签:区间最值操作,吉司机线段树,简单模板题一、题目描述现在有这样的一个问题:你有一个长度为\(n\)(\(n≤1e6\))的序列,你......
  • *128. Longest Consecutive Sequence [Medium]
    128.LongestConsecutiveSequenceGivenanunsortedarrayofintegersnums,returnthelengthofthelongestconsecutiveelementssequence.Youmustwriteana......
  • [oeasy]python0041_ 转义字符_转义序列_escape_序列_sequence
    转义序列回忆上次内容上次回顾了5bit-Baudot博多码的来历从莫尔斯码到博多码原来人来收发电报现在机器来收发电报输入方式从电键改成键盘......
  • (0106) 《【UVM】sequence 的启动方式》
    https://blog.csdn.net/Holden_Liu/article/details/102757625(2)https://blog.csdn.net/weixin_42147770/article/details/127899670(3)https://www.cnblogs.com/xuqing125/......
  • BalticOI 2004 Sequence 题解
    题目链接在这里~对于序列\(\{a\}\),把每一个\(a_i\)减去一个\(i\),得到\(\{a'\}\)序列\(\{b\}\)同理。因为\(b_1<b_2<...<b_n\),故\(b_1'\leqslantb_2'\leqslant...\leqs......
  • CF13C. Sequence
    题目描述\(\qquad\)给你一个序列\(\largea\),要求你把它变成一个递增的序列,将目标序列与这个序列对应位置上所有数的差值和成为修改花费,求最小的修改花费。解题思路\(\q......
  • Codeforces Good Bye 2022 CF 1770 F Koxia and Sequence 题解
    题目链接注意题目要求的是所有好序列的所有元素的XOR之和的XOR之和。我一开始以为是所有XOR之和的加法和导致不知道官方题解在讲什么。假设我们枚举一个位置\(1\lei\le......
  • CodeForces 1349F1 Slime and Sequences (Easy Version)
    洛谷传送门CF传送门发现样例中所有数的和为\(n!n\),于是猜想好的序列总数为\(n!\)。考虑将每一个排列\(p\)唯一对应一个好的序列\(a\)。可以这么构造:在\(p\)中顺......