首页 > 其他分享 >2023寒假 图论练习

2023寒假 图论练习

时间:2023-01-15 10:44:06浏览次数:67  
标签:图论 const int ll dis 寒假 2023 include define

k.Killer Sajin's Matrix

https://ac.nowcoder.com/acm/contest/38727/K

题意

构造一个n*m的01矩阵 使得1的个数正好是k,每行每列的和为奇数

思路

我们可以把这个问题转化成一个经典图论问题。
这就相当于对于某个位置是1的,我们就把那一行和那一列连一条边。然后因为限制就是,每行每列的度数为奇数,且所有行度数和为k,所有列度数和为k,那我们就可以先给每行每列都度数为1,然后根据k还剩余的度数,两个两个分给一行或一列。
无法构造的情况就是:一开始无法给每个点都分配一个度数或者后面两个两个分,分到最后只剩一个无法凑两。
这样我们每个行和列都有一个度数了,那我们就可以二分图构造。将行的度数从大到小排列,如果当前行要x个度数,那我们就让他与剩余度数最大的x个列连边,这样一定能保证有解。

#include <bits/stdc++.h>
#include <stdlib.h>
#include <cstring>
using namespace std;
#define fi first
#define se second
#define m_p make_pair
#define IOS ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
#define ll long long
#define int ll
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int N = 2e5 + 5;
const int M = 1e7 + 5;

int n, m, k;
int cnt[N], cnt2[N];
void solve() {
    cin >> n >> m >> k;
    if(k < n || k < m){
        cout << "No\n";
        return;
    }

    for(int i = 1; i <= n; i++)
        cnt[i] = 1;
    for(int i = 1; i <= m; i++)
        cnt2[i] = 1;
    int k1 = k - n;
    int k2 = k - m;
    if(k1 % 2 || k2 % 2) {
        cout << "No" << "\n";
        return;
    }

    for(int i = 1; k1; i++){
        if(i > n) i = 1;
        cnt[i] += 2;
        k1 -= 2;
    }

    for(int i = 1; k2; i++){
        if(i > m) i = 1;
        cnt2[i] += 2;
        k2 -= 2;
    }

    // for(int i = 1; i <= n; i++)
    //     cerr << cnt[i] << " \n"[i == n];
    // for(int i = 1; i <= m; i++)
    //     cerr << cnt2[i] << " \n"[i == m];

    vector<pair<int, int>>ans;
    priority_queue<pair<int, int>>q;
    for(int i = 1; i <= m; i++)
        q.push({cnt2[i], i});
       
    for(int i = 1; i <= n; i++){
        vector<int>ve;
        for(int j = 1; j <= cnt[i]; j++){
            if(q.empty()){
                cout << "No" << "\n";
                return;
            }

            auto [x, id] = q.top();
            q.pop();
            cnt2[id]--;
            ans.push_back({i, id});
            if(cnt2[id]) ve.push_back(id);
            
        }
        
        for(auto& id : ve)
            q.push({cnt2[id], id});
    }

    cout << "Yes\n";
    for(auto& [u, v] : ans)
        cout << u << " " << v << "\n";
}

signed main()
{
    //freopen("kotlin.in", "r", stdin);
    //freopen("kotlin.out", "w", stdout);
	IOS;
	int t = 1;
	cin >> t;
	while (t--)
	{
		solve();
	}
}

E. Anya's Simultaneous Exhibition

https://codeforces.ml/contest/1779/problem/E

题意

n个人,谁能打败谁是固定的,一次比赛选两个人对决,输的淘汰,最后留下那个是赢者。
每次可以询问一个i和另外若干个人比赛的胜负情况,你要找到最后可能获胜的几个人。
询问次数不能超过2*n.

思路

其实这就是一张竞赛图,我们可以询问两两的胜负情况,然后构建出一张竞赛图。
然后根据竞赛图的性质,按出度排列,找到第一个强连通分量就是所有可能获胜的人。

#include <bits/stdc++.h>
#include <stdlib.h>
#include <cstring>
using namespace std;
#define fi first
#define se second
#define m_p make_pair
#define IOS ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
#define ll long long
#define int ll
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int N = 1e6 + 5;
const int M = 1e7 + 5;
int out[N], n, c[N];
pair<int, int>p[N];

void query(int x) {
    string s = "";
    for (int i = 1; i <= n; i++) {
        if (i == x) s += '0';
        else s += '1';
    }
    cout << "? " << x << " " << s << "\n";
    cout.flush();
    cin >> out[x];
}

void solve() {
    cin >> n;
    //cout << 1 << "\n";
    //cout.flush();
    for (int i = 1; i <= n; i++) {
        query(i);
        p[i] = { out[i], i };
    }
    sort(p + 1, p + 1 + n, greater<>());

    int sum = 0;
    for (int i = 1; i <= n; i++) {
        sum += p[i].first;
        c[p[i].second] = 1;
        int num = i * (i - 1) / 2 + i * (n - i);
        if (sum == num) {
            string ans = "";
            for (int j = 1; j <= n; j++) {
                if (c[j]) ans += '1';
                else ans += '0';
            }
            cout << "! " << ans << "\n";
            cout.flush();
            return;
        }
    }

}

signed main()
{
    //freopen("kotlin.in", "r", stdin);
    //freopen("kotlin.out", "w", stdout);
    //IOS;
    int t = 1;
    //cin >> t;
    while (t--)
    {
        solve();
    }
}

J. Perfect Matching

https://codeforces.ml/gym/104128/problem/J

题意

给定n个点的无向图,如果两个点满足\(|a_i - a_j| = |i - j|\) 就将两个点连一条边。
然后求这个无向图的完美匹配。

思路

我们可以将这个绝对值拆分,条件变成 \(a_i + i = a_j + j\) 或 \(a_i - i = a_j - j\),然后转化成图论问题。
转化成二分图,将\(a_i - i\)作为二分图左边的点,\(a_i + i\)为右边的点,对于每个\(a_i\)我们让 \(a_i - i\)到\(a_i + i\)连边,这条边就代表是原来的点i。
如果两条边有公共点,说明两条边(即原来的两个点)可以匹配,这样就变成了求二分图上,邻边匹配问题。
这个邻边匹配问题比较典型,我们可以先找出一颗生成树,然后让某个点的儿子两两匹配,如果还多出一个儿子就和父亲匹配,如果是非树边,也可以类似操作。

#include <bits/stdc++.h>
#include <stdlib.h>
#include <cstring>
using namespace std;
#define fi first
#define se second
#define m_p make_pair
#define IOS ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
#define ll long long
#define int ll
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int N = 1e6 + 5;
const int M = 1e7 + 5;

int n, a[N], used[N], vis[N], f, tot;
vector<pair<int, int>>g[N];
vector<pair<int, int>>ans;
map<int, int>mp, mp2;

void dfs(int x, int id){
    vector<int>ve;
    vis[x] = 1;
    for(auto& [to, id2] : g[x]){
        if(id == id2) continue;
        if(!vis[to]) dfs(to, id2);
        if(!used[id2])
            ve.push_back(id2);
    }

    int m = ve.size();
    if(m % 2) {
        if(id == -1){
            f = 1;
            return;
        }

        for(int i = 0; i < m - 1; i += 2) {
            ans.push_back({ve[i], ve[i + 1]});
            used[ve[i]] = 1;
            used[ve[i + 1]] = 1;
        }
        ans.push_back({ve[m - 1], id});
        used[ve[m - 1]] = 1;
        used[id] = 1;
    }
    else{
        for(int i = 0; i < m; i += 2) {
            ans.push_back({ve[i], ve[i + 1]});
            used[ve[i]] = 1;
            used[ve[i + 1]] = 1;
        }
    }
}

void init(){
    mp.clear();
    mp2.clear();
    for(int i = 1; i <= n * 2; i++) {
        g[i].clear();
        vis[i] = 0;
    }
    for(int i = 1; i <= n; i++)
        used[i] = 0;
    ans.clear();
}

void solve() {
    cin >> n;
    init();
    
    tot = 0;
    for(int i = 1; i <= n; i++){
        cin >> a[i];
        int u = a[i] - i;
        int v = a[i] + i;
        if(mp.count(u) == 0) {
            mp[u] = ++tot;
            u = tot;
        }
        else u = mp[u];

        if(mp2.count(v) == 0) {
            mp2[v] = ++tot;
            v = tot;
        }
        else v = mp2[v];

        g[u].push_back({v, i});
        g[v].push_back({u, i});
    }
     
    f = 0;
    for(int i = 1; i <= n; i++){
        int s = mp[a[i] - i];
        if(!vis[s]) 
            dfs(s, -1);
        if(f) {
            cout << "No\n";
            return;
        }
    }

    cout << "Yes\n";
    for(auto& [u, v] : ans)
        cout << u << " " << v << "\n";

}

signed main()
{
    //freopen("kotlin.in", "r", stdin);
    //freopen("kotlin.out", "w", stdout);
	IOS;
	int t = 1;
	cin >> t;
	while (t--)
	{
		solve();
	}
}

E - GCD of Path Weights

https://atcoder.jp/contests/arc144/tasks/arc144_e

题意

给定一个dag,给每个点设点权,使得1号点到n号点的所有路径的点权的gcd,存在有些点权值未知。

思路

先考虑有边权求1到n所有路径权值的gcd这个典型问题。
对于这个问题,我们可以先把1不能到达的点和n不能到达的点给去掉,然后构成一个新的图。
对于这个图,我们可以先将他看成一颗生成树,将1点标记为0。然后我们就沿着树边,将每个点根据边权标记好(设i点标记为dis[i])。
然后问题就变成了求最大的p使得p能整除dis[0]和dis[n],且对于每条非树边[u, v, w],p能整除\(|dis[v] - (dis[u] + w)|\)。即就是求这些值的gcd。

再回过来看这个问题,因为是点权,所以我们其实可以将每个点拆成两个点,这两个点(出点入点)连一条权值为\(a_i\)的边,然后再根据原图,让u的出点和v的入点连一条权值为0的边。
如果是权值未知的点那我们就不给它的出入点连边。因为有可能存在断开的情况所以我们连的应该是无向边。
然后再按上面一样的做法求答案就可。(注意的是因为有权值未知点的存在,可能有多个连通图,应该遍历每个求答案)

#include <bits/stdc++.h>
#include <stdlib.h>
#include <cstring>
using namespace std;
#define fi first
#define se second
#define m_p make_pair
#define IOS ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
#define ll long long
#define int ll
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int N = 6e5 + 5;
const int M = 1e6 + 5;

int n, m, a[N], c[2][N], val[N], vis[N], ans;
int can[N];
vector<int>g[2][N];
vector<pair<int, int>>g2[N];
pair<int, int>e[N];

void dfs(int x, int k){
    c[k][x] = 1;
    for(auto to : g[k][x]) {
        if(c[k][to]) continue;
        dfs(to, k);
    }
}

void dfs2(int x){
    vis[x] = 1;
    for(auto [to, w] : g2[x]){
        if(!vis[to]) {
            val[to] = val[x] + w;
            dfs2(to);
        }
        else ans = gcd(ans, abs(val[x] + w - val[to]));
    }
}

void solve() {
    cin >> n >> m;
    for(int i = 1, u, v; i <= m; i++){
        cin >> u >> v;
        g[0][u].push_back(v);
        g[1][v].push_back(u);
        e[i] = {u, v};
    }

    for(int i = 1; i <= n; i++)
        cin >> a[i];

    dfs(1, 0);
    dfs(n, 1);
    if(!c[0][n]) {
        cout << "-1\n";
        return;
    }

    for(int i = 1; i <= n; i++){
        if(c[0][i] && c[1][i]) {
            if(a[i] != -1) {
                g2[i].push_back({i + n, a[i]});
                g2[i + n].push_back({i, -a[i]});
            }
            can[i] = 1;
        }
    }

    for(int i = 1; i <= m; i++){
        int u = e[i].first;
        int v = e[i].second;
        if(can[u] && can[v]) {
            g2[u + n].push_back({v, 0});
            g2[v].push_back({u + n, 0});
        }
    }

    ans = 0;
    for(int i = 1; i <= n * 2; i++){
        if(!vis[i]) {
            val[i] = 0;
            dfs2(i);
            if(i == 1 && vis[n + n]) //样例四的情况
                ans = gcd(ans, val[n + n]);
        }
    }

    if(!ans) {
        cout << -1 << "\n";
        return;
    }
    cout << ans << "\n";
}

signed main()
{
    //freopen("kotlin.in", "r", stdin);
    //freopen("kotlin.out", "w", stdout);
	IOS;
	int t = 1;
	//cin >> t;
	while (t--)
	{
		solve();
	}
}

G - Farthest City

https://atcoder.jp/contests/abc281/tasks/abc281_g

题意

给定n个点 求构造 1节点到其他所有节点的最短路中,1到n的最短路最大 的无向连通图的方案数。

思路

可以联系bfs树,每一层节点到源点的距离相同,一条边的两个的到源点的距离差值不超过1。
我们可以一层一层构造,然后dp计数。
dp[i][j]代表前i个点,最后一层有j个点的方案数。
那么dp[i][j]就是从上一层转移过来的 让k代表上一层的点数,我们就可以枚举k来转移,即dp[i - j][k]->dp[i][j]。
然后就是求方案数,对于当前最后一层的j个点,两两之间都可以选择连边或者不连边即有\(2^{((^j_2))}\)种方案,然后对于j个点中的一个点,它可以跟前面k个点任意几个连边或不连边,但不能全不连边,那么这部分的方案数就是\((2^k - 1)^j\),然后这j个点的选法有\((^{n - i + j - 1}_j)\)的方案
三部分相乘就是每次转移多的方案 复杂度O(n^3)

#include <bits/stdc++.h>
#include <stdlib.h>
#include <cstring>
using namespace std;
#define fi first
#define se second
#define m_p make_pair
#define IOS ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
#define ll long long
#define int ll
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int N = 500 + 5;
const int M = 1e6 + 5;

int n, m;
int c[N][N], dp[N][N];
int pow2[M];

int qpow(int base, int pow){
    int ans = 1;
    while(pow){
        if(pow & 1) ans = ans * base % m;
        base = base * base % m;
        pow >>= 1;
    }
    return ans;
}

void solve() {
    cin >> n >> m;
    //预处理组合数和幂指数不然会超时
    for(int i = 1; i <= n; i++)
        c[i][0] = 1;
    for(int i = 1; i <= n; i++){
        for(int j = 1; j < i; j++)
            c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % m;
        c[i][i] = 1;
    }

    pow2[0] = 1;
    for(int i = 1; i <= n * n; i++)
        pow2[i] = pow2[i - 1] * 2 % m;

    dp[1][1] = 1;
    for(int i = 2; i < n; i++){
        for(int j = 1; j <= i - 1; j++){
            for(int k = 1; k <= i - j; k++){
                dp[i][j] = (dp[i][j] + dp[i - j][k] * pow2[c[j][2]] % m * qpow((pow2[k] - 1 + m) % m, j) % m * c[n - i + j - 1][j] % m) % m;
            }
        }
    }

    int ans = 0;
    for(int i = 1; i < n - 1; i++)
    ans = (ans + dp[n - 1][i] * ((pow2[i] - 1 + m) % m) % m) % m;  
    cout << ans << "\n";

}

signed main()
{
    //freopen("kotlin.in", "r", stdin);
    //freopen("kotlin.out", "w", stdout);
	//IOS;
	int t = 1;
	//cin >> t;
	while (t--)
	{
		solve();
	}
}

B. Complete The Graph

https://codeforces.ml/problemset/problem/715/B

题意

给定一个图,一些边的边权未知,现在让你给未知的边设边权(1<=w<=1e18),满足s到t的最短路正好等于k

思路

将所有未知点的权值都设为k,然后跑dij求最短路,如果最短路比k还小就无解,如果没有未知点且最短路不等于k也无解。
然后遍历每一条未知边,将他的权值设为1,再跑最短路,如果最后距离小于k,那就将这条边的权值设为\(k - dis[t] + 1\),就找到答案结束即可,否则遍历下一条边做相同操作。
最后如果边权全为1后还不能找到一组解就是无解。

#include <bits/stdc++.h>
#include <stdlib.h>
#include <cstring>
using namespace std;
#define fi first
#define se second
#define m_p make_pair
#define IOS ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
#define ll long long
//#define int ll
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int N = 1e4 + 5;
const int M = 1e7 + 5;

int n, m, k, s, t;
int dis[N];
int vis[N], w[N];
vector<pair<int, int>>g[N];
pair<int, int>e[N];

inline void dij(int s){
    priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>>q;
    for(int i = 0; i < n; i++){
        dis[i] = k + 1;
        vis[i] = 0;
    }
    dis[s] = 0;
    q.push({dis[s], s});

    while(q.size()){
        auto [d, x] = q.top();
        q.pop();

        if(x == t) break;
        if(vis[x]) continue;
        vis[x] = 1;

        for(auto [to, id] : g[x]){
            if(dis[to] - dis[x] > w[id]){
                dis[to] = dis[x] + w[id];
                q.push({dis[to], to});
            }
        }

    }
}

inline int check(int id, int x){
    w[id] = x;
    dij(s);
    //cerr << dis[t] << "\n";
    return dis[t];
}

void solve() {
    cin >> n >> m >> k >> s >> t;

    vector<int>edge;
    for(int i = 1, u, v, d; i <= m; i++){
        cin >> u >> v >> d;
        g[u].push_back({v, i});
        g[v].push_back({u, i});
        e[i] = {u, v};
        w[i] = d;
        if(!d) {
            edge.push_back(i);
            w[i] = k;
        }
    }

    dij(s);
    //cerr << dis[t] << "\n";
    if(dis[t] < k) {
        cout << "NO\n";
        return;
    }

    if(dis[t] == k){
        cout << "YES\n";
        for(int i = 1; i <= m; i++)
            cout << e[i].first << " " << e[i].second << " " << w[i] << "\n";
        return;
    }
    else if(!edge.size()) {
        cout << "NO\n";
        return;
    }
    
    for(auto& id : edge){
        w[id] = 1;
        dij(s);
        if(dis[t] > k) continue;
        w[id] = k - dis[t] + 1;
        cout << "YES\n";
        for(int i = 1; i <= m; i++)
            cout << e[i].first << " " << e[i].second << " " << w[i] << "\n";
        return;
    }

    //cerr << f << "\n";
    cout << "NO\n";
    
}

signed main()
{
    //freopen("kotlin.in", "r", stdin);
    //freopen("kotlin.out", "w", stdout);
	IOS;
	int t = 1;
	//cin >> t;
	while (t--)
	{
		solve();
	}
}

E. Flights

https://codeforces.ml/problemset/problem/241/E

题意

给定一个图,每条边只能设成1或2,要求1到n的路径的权值和一样,求构造方案。

思路

经典差分约束题
先去除1不能到的点和n不能到的点。
相当于\(1 \leq u - v \leq 2\) 转化成 \(u - v \leq 2\)且 \(v - u \leq -1\),然后给u到v建一条权值为2的边,v到u建一条权值为-1的边,跑bellman即可。

#include <bits/stdc++.h>
#include <stdlib.h>
#include <cstring>
using namespace std;
#define fi first
#define se second
#define m_p make_pair
#define IOS ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
#define ll long long
#define int ll
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int N = 5e3 + 5;
const int M = 1e6 + 5;

int n, m;
int c[N][2], vis[N], can[N], ans[N];
int dis[N];
vector<int>g[2][N];
vector<pair<int, int>>g2[N];
pair<int, int>e[N];

void dfs(int x, int k){
    c[x][k] = 1;
    for(auto to : g[k][x]){
        if(!c[to][k]) 
            dfs(to, k);
    }
}

bool bellman(){
    for(int i = 1; i <= n; i++)
        dis[i] = inf;

    dis[1] = 0;
    int f = 0;
    for(int j = 1; j <= n; j++) {
        f = 0;
        for(int i = 1; i <= n; i++){
            if(dis[i] == inf) continue;
            for(auto [to, w] : g2[i]) {
                if(dis[to] > dis[i] + w) {
                    dis[to] = dis[i] + w;
                    f = 1;
                }
            }
        }
        if(!f) break;
    }
    return f == 0;
}

void solve() {
    cin >> n >> m;
    for(int i = 1, u, v; i <= m; i++){
        cin >> u >> v;
        g[0][u].push_back(v);
        g[1][v].push_back(u);
        e[i] = {u, v};
    }

    dfs(1, 0);
    dfs(n, 1);
    for(int i = 1; i <= n; i++){
        if(c[i][0] && c[i][1])
            can[i] = 1;
    }

    for(int i = 1; i <= m; i++){
        int u = e[i].first;
        int v = e[i].second;
        if(can[u] && can[v]) {
            g2[u].push_back({v, 2});
            g2[v].push_back({u, -1});
        }
    }

    if(!bellman()) {
        cout << "No" << '\n';
        return;
    }

    cout << "Yes\n";
    for(int i = 1; i <= m; i++){
        int u = e[i].first;
        int v = e[i].second;
        if(!can[u] || !can[v]) ans[i] = 1;
        else ans[i] = abs(dis[u] - dis[v]);
    }

    for(int i = 1; i <= m; i++)
        cout << ans[i] << '\n';

}

signed main()
{
    //freopen("kotlin.in", "r", stdin);
    //freopen("kotlin.out", "w", stdout);
	IOS;
	int t = 1;
	//cin >> t;
	while (t--)
	{
		solve();
	}
}

标签:图论,const,int,ll,dis,寒假,2023,include,define
From: https://www.cnblogs.com/yaqu-qxyq/p/17053187.html

相关文章

  • .NET周报【1月第2期 2023-01-13】
    国内文章【ASP.NETCore】按用户等级授权https://www.cnblogs.com/tcjiaan/p/17024363.html本文介绍了ASP.NETCore如何按照用户等级进行授权。在C#9中使用foreach......
  • 【随记】2023-1-15 生活感想
    眨眼睛进入it行业也有5年之久,一直没什么成绩,也找不到方向和目标。因为这个原因,一度抑郁,看不到未来。比我年轻的人陆陆续续涌入这个行业,我能做的活他们也能做,甚至比我做得更......
  • 寒假不躺平,假期很精彩——2022 年寒假计划
    前言前两天在博客园中发布了我的2022年终总结——《一个专科生的2022年终总结——默默努力,成为更好的自己》,得到了园内前辈们的鼓励和指导,在这里感谢各位前辈们的认可......
  • t团队日常记录 20230114
    作为一名本科生,我感觉再提升到硕士是比较困难的一件事,而即使如此,方向也应该专注。就比如现在我在t团队的这几天,了解到t团队的一个比较宏观上的规划后,感觉可以与t团队进......
  • XMU 2023.1.14 题解汇总
    A、CF1779A原题B、https://www.cnblogs.com/wondering-world/p/17038860.htmlC、https://www.luogu.com.cn/problem/solution/P4305D、快速幂模板点击查看代码#incl......
  • 【2023-01-10】生活装修
    20:00身先行动起来,装出快乐起来,随之心就会快乐起来。                                    ......
  • 【2023-01-09】连岳摘抄
    23:59须知人要乐生,以身体健康为第一要义。                                       ......
  • 2023 射频培训-以模块划分
    射频培训-以模块划分源SourcePLL频率合成器——e.g.ADF4351DDS频率合成器——e.g.AD99599854TxDACLC谐振网,用于第一中频FM发生、解调电路多谐振荡器OCXO-......
  • DTOJ-2023-01-02-测试-题解
    (2023省选模拟Round#4)之前感冒了一阵子,错过了两场省选模拟,不过我不打算补(乐成绩:0+42+0(就是说T1写挂了)A题目链接题目大意小\(\omega\)最近学习了分治\(\text{......
  • 2023/1/14 20221321杨渝学习打卡
    python学习学习链接:https://www.bilibili.com/video/BV14r4y1k7F9/?spm_id_from=333.999.0.0&vd_source=a989a1afa6cb8b6527dd9bf059d71439元组字典元组元组,英文为t......