首页 > 其他分享 >Codeforces 1630 E Making It Bipartite 题解 (Dilworth定理)

Codeforces 1630 E Making It Bipartite 题解 (Dilworth定理)

时间:2023-01-14 16:22:05浏览次数:74  
标签:1630 dist int 题解 LL flow Codeforces pos rep

题目链接

首先可以想到把题目中的那张图G建出来,由于要求这张图是二分图,把它复制一遍(\(G\to G'\)),然后对于每个u,连一条无向边\(u-u'\),这样就变成了最大独立集问题。但是一般图最大独立集是没有多项式复杂度的做法的,所以不行。

考虑先把这张图看成有向图,也就是如果\(a_i|a_j\),就连一条有向边\(i\to j\),令连出的图为G。由于所有\(a_i\)不相同,且\(a_i\)的大小与n一个数量级,所以这张图边数是\(O(nlogn)\)级别的。注意到这个图中如果\(i\to j,j\to k\),那么一定有\(i\to k\),这样就产生了三元环,不合法了。观察发现这个图合法的充要条件是:不存在同时有入边和出边的点,也就是一个点要么是入点只有入度,要么是出点只有出度。必要性显然,因为不能让长度为3的环存在;充分性:一个长度为奇数的简单环中肯定有一个同时有入度和出度的点,把这种点ban掉之后就肯定没有奇环了。

然后还是跟之前的方法一样,把图复制一遍(\(G\to G'\),也就是拆点),然后对于每个u,连一条向边\(u\to u'\),令最终的图为H。显然这个图是个DAG。这题的答案其实是这个DAG的最长反链的长度。先看求法,再说证明。

关于最长反链见Dilworth定理

根据Dilworth定理,最长反链长度=最小链覆盖的大小。注意这里的链覆盖是可以重合的,也就是一个点可以被多条链涉及。不能重合的链覆盖的求法,上面的链接里有。能重合的情况,需要先求这个图的传递闭包,也就是如果\(i\to j,j\to k\)就必须加上\(i\to k\)这条边,做完这个变换后再跟不能重合的情况一样做就行了。这题中这个图的传递闭包是很好求的,如果\(G\)中有一条边\(u\to v\),就在H中加一条\(u\to v'\)的边,发现此时H就满足要求了,并且边数仍是\(O(nlogn)\)级别。

正确性证明:在最长反链中,\(u和u'\)显然只有最多一个被选,因为u和u'之间有一条边。令选u表示这个点没有出度(B类点),选u'表示这个点没有入度(A类点),都不选表示这个点被删除。我们不能接受一个点已经是A类却还有没被删除的点到它有边,或者是一个点已经是B类却还到没被删除的点有边,这也是我们唯一的要求。画一下图就会发现"选出的点两两之间没有路径"与这个要求等价。

最小链覆盖是转化成二分图匹配来跑的,Dinic跑匹配的复杂度是\(O(\sqrt n m)\),所以总时间复杂度\(O(nlogn\sqrt n)\)。

这题一共经历了这些转化:无向图\(\to\)有向图\(\to\)不存在同时有入边和出边的点\(\to\)最长反链长度\(\to\)最小链覆盖大小\(\to\)二分图匹配

点击查看代码
#include <bits/stdc++.h>

#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <int,int>
#define fi first
#define se second
#define mpr make_pair
#define pb push_back

void fileio()
{
  #ifdef LGS
  freopen("in.txt","r",stdin);
  freopen("out.txt","w",stdout);
  #endif
}
void termin()
{
  #ifdef LGS
  std::cout<<"\n\nEXECUTION TERMINATED";
  #endif
  exit(0);
}

using namespace std;

struct node
{
	LL to,flow,rev;
	node(LL a,LL b,LL c):to(a),flow(b),rev(c){}
};
namespace maxFlow
{
	LL n,dist[200010],cur[200010];
	vector <node> g[200010];
	queue <LL> q;
	void add_edge(LL x,LL y,LL z)
	{
		g[x].pb(node(y,z,g[y].size()));
		g[y].pb(node(x,0,g[x].size()-1));
	}
	void bfs(LL s)
	{
		rep(i,n+5) dist[i]=-1;
		dist[s]=0;q.push(s);
		while(!q.empty())
		{
			int f=q.front();q.pop();
			rep(i,g[f].size())
			{
				if(dist[g[f][i].to]!=-1||g[f][i].flow==0) continue;
				dist[g[f][i].to]=dist[f]+1;
				q.push(g[f][i].to);
			}
		}
	}
	LL dfs(LL pos,LL t,LL flow)
	{
		if(pos==t) return flow;
		for(int i=cur[pos];i<g[pos].size();++i,++cur[pos])
		{
			if(g[pos][i].flow==0||dist[g[pos][i].to]!=dist[pos]+1) continue;
			LL flow2=dfs(g[pos][i].to,t,min(flow,g[pos][i].flow));
			if(flow2>0)
			{
				g[pos][i].flow-=flow2;
				g[g[pos][i].to][g[pos][i].rev].flow+=flow2;
				return flow2;
			}
		}
		return 0;
	}
	LL max_flow(LL s,LL t)
	{
		LL ret=0;
		while(true)
		{
			bfs(s);
			if(dist[t]==-1) return ret;
			rep(i,n+5) cur[i]=0;
			while(true)
			{
				LL add=dfs(s,t,1e12);
				if(add==0) break;
				ret+=add;
			}
		}
	}
}

int t,n,a[50010];
vector <pii> oe,e;

int main()
{
  fileio();

  cin>>t;
  rep(tn,t)
  {
    scanf("%d",&n);
    repn(i,n) scanf("%d",&a[i]);
    oe.clear();
    map <int,int> mp;
    repn(i,n) mp[a[i]]=i;
    repn(i,n) for(int j=a[i]+a[i];j<=50000;j+=a[i]) if(mp.find(j)!=mp.end()) oe.pb(mpr(i,mp[j]));
    e.clear();
    rep(i,oe.size()) e.pb(oe[i]),e.pb(mpr(oe[i].fi+n,oe[i].se+n)),e.pb(mpr(oe[i].fi,oe[i].se+n));
    repn(i,n) e.pb(mpr(i,i+n));
    rep(i,maxFlow::n+3) maxFlow::g[i].clear();
    maxFlow::n=n*4+2;
    rep(i,e.size()) maxFlow::add_edge(e[i].fi,e[i].se+n+n,1);
    int ss=n*4+1,tt=n*4+2;
    repn(i,n*2)
    {
      maxFlow::add_edge(ss,i,1);
      maxFlow::add_edge(i+n*2,tt,1);
    }
    int ans=maxFlow::max_flow(ss,tt);
    printf("%d\n",n-(n*2-ans));
  }

  termin();
}

标签:1630,dist,int,题解,LL,flow,Codeforces,pos,rep
From: https://www.cnblogs.com/legendstane/p/codeforces-1630-f-Making-It-Bipartite-solution-dilwo

相关文章

  • P1390 公约数的和 题解
    传送门题意:求出\(\sum\limits_{i=1}^{n}\sum\limits_{j=i+1}^{n}\gcd(i,j)\)原式\(=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{i-1}\gcd(i,j)\)\(=\sum\limits_{d=1......
  • P4220 题解
    前言题目传送门!更好的阅读体验?思路代码为了使代码更容易通过,可以像我一样膜拜大佬,获得随机种子,通过的概率更大。#include<iostream>#include<cstdio>#include<......
  • 【题解】P5030 长脖子鹿放置(网络流)
    长脖子鹿放置题目背景众周所知,在西洋棋中,我们有城堡、骑士、皇后、主教和长脖子鹿。题目描述如图所示,西洋棋的“长脖子鹿”,类似于中国象棋的马,但按照“目”字攻击,且没......
  • 1.14模拟赛题解
    T1考虑枚举线段的中点,计算它对答案的贡献。时间复杂度\(O(nm)\)。T2首先可以计算出最大流量\(maxf=\dfrac{sum}{len}\)。那么就可以将\(k\)条路径当成一条来看。把......
  • 【题解】P4292 [WC2010]重建计划
    【乐正绫AI】世末歌者「Cotton」绫绫,有你AI的每一天,我都很幸福[大笑][大笑][大笑]【乐正绫AI】世末歌者【砖厂浪人&TsingClouds】绫绫,有你的每一天,我都很幸福[大笑][大......
  • Centos7下安装Dogtail GUI自动化测试工具并打开sniff工具过程中遇到的问题解决方法
    (目录)因为测试需要,需在Centos下进行liunxGUI软件自动化测试,所以用到了python的Dogtail库,继而使用Dogtail的sniff控件获取工具,但是遇到了很多问题记录如下。1环境Cent......
  • SPOJ LCMSUM 题解
    LCMSUM题意:求:\(\sum\limits_{i=1}^n\lim(i,n)\)数据范围:\(1\leqT\leq3\times10^5\),\(1\leqn\leq10^6\)。原式\(=\sum\limits_{i=1}^n\frac{i\timesn}{\gc......
  • 题解 CF678D【Iterated Linear Function】
    暴力解法。初学群论,可能写的不是很严谨,望大佬指正。problem\[g^{(n)}(x)=\begin{cases}x,&(n=0).\\f(g^{(n-1)}),&(n>0).\end{cases}\]其中\(f\)是一次函数。给出......
  • 【题解】CF848C Goodbye Souvenir
    冷漠和缄默思路cdq分治。有各种懂哥写了科技做法,比如树套树和二维分块,有点离谱。首先考虑答案的形式。令\(lst_i\)为\([1,i)\)中\(a_i\)最后一次出现的位置,则......
  • AGC060 题解
    Wow,ChristmasRound.--Tom66A.NoMajority(1300)结论:若一个序列有严格众数,则序列中必有两个相同数字位置之差为\(1\)或\(2\)。证明设序列长为$k$,则严格......