首页 > 其他分享 >es基础查询语法

es基础查询语法

时间:2023-01-10 09:58:31浏览次数:61  
标签:count index doc age 查询 语法 match test es

1、es基础查询

1.1 准备数据

# 准备数据
PUT test_index/_doc/1
{
  "name":"顾老二",
  "age":30,
  "from": "gu",
  "desc": "皮肤黑、武器长、性格直",
  "tags": ["黑", "长", "直"]
}

PUT test_index/_doc/2
{
  "name":"大娘子",
  "age":18,
  "from":"sheng",
  "desc":"肤白貌美,娇憨可爱",
  "tags":["白", "富","美"]
}

PUT test_index/_doc/3
{
  "name":"龙套偏房",
  "age":22,
  "from":"gu",
  "desc":"mmp,没怎么看,不知道怎么形容",
  "tags":["造数据", "真","难"]
}

PUT test_index/_doc/4
{
  "name":"石头",
  "age":29,
  "from":"gu",
  "desc":"粗中有细,狐假虎威",
  "tags":["粗", "大","猛"]
}

PUT test_index/_doc/5
{
  "name":"魏行首",
  "age":25,
  "from":"广云台",
  "desc":"仿佛兮若轻云之蔽月,飘飘兮若流风之回雪,mmp,最后竟然没有嫁给顾老二!",
  "tags":["闭月","羞花"]
}

1.2 match和term

match 和 term 中必须要加条件,但是我们有时候需要查询所有,不带条件,需要用到 match_all
match:会将查询条件分词,然后进行查询。会先对搜索词进行分词,比如“白雪公主和苹果”,会分成“白雪”“公主”“苹果”。含有相关内容的字段,都会被检索出来。
term:会将查询条件完整的匹配相关字段,"=="

1.3 match_all

# 查询所有
GET test_index/_search
{
  "query": {
    "match_all": {}
  }
}

1.4 前缀查询match_phrase_prefix

# 查英文   beautiful   --->be开头的---》能查到

GET test_index/_search
{
  "query": {
    "match_phrase_prefix": {
      "name": "顾"
    }
  }
}

1.5 match_phrase。短语模糊查询,即它会将给定的短语(phrase)当成一个完整的查询条件。match_phrase与slop一起用,能保证分词间的邻近关系,slop参数告诉match_phrase查询词条能够相隔多远时仍然将文档视为匹配,默认是0。为0时必须相邻才能被检索出来。

# 会分词,分词完成后,如果写了slop,会按分词之间间隔是slop数字去抽

GET t1/doc/_search
{
  "query": {
    "match_phrase": {
      "title": {
        "query": "中国世界",
        "slop": 2
      }
    }
  }
}

1.6 多条件查询,或的关系

# 只要name或者desc中带龙套就查出来

GET test_index/_search  
{
  "query": {
    "multi_match": {
      "query": "龙套",
      "fields": ["name", "desc"]
    }
  }
}

1.7指定查询字段

GET test_index/_search 
{
  "query": { "match_all": {} },
  "_source": ["id", "createTime"]
}

1.8 wildcard通配符查询。match_phrase与slop一起用,能保证分词间的邻近关系,slop参数告诉match_phrase查询词条能够相隔多远时仍然将文档视为匹配,默认是0。为0时 必须相邻才能被检索出来。与mysql中的 Like 是一个套路,可以在查询时,在字符串中指定通配符*和占位符?Wildcard 性能会比较慢。如果非必要,尽量避免在开头加通配符 ? 或者 *,这样会明显降低查询性能

 {
    "wildcard": {
        "form_name.keyword": "*very*"
    }
}

# 查询的内容非空
{
    "wildcard": {
        "form_name": "*"
    }
}
 

1.9 查看分词结果

# fieldName可以字段名,也可以是字段名.
http://localhost:9200/{index}/{type}/{id}/_termvectors?fields={fieldName} 

http://localhost:9200/a_index_text/_doc/n1A6ioUBFQ9q5qTUK1mH/_termvectors?fields=phone.short_char

2、Elasticsearch之排序查询

# 结构化查询 
GET test_index/_search
{
  "query": {
    "match": {
      "name": "zz"
    }
  }
}


# 排序查询---》可以按多个排序条件-->sort的列表中继续加
GET test_index/_search
{
  "query": {
    "match": {
      "from": "gu"
    }
  },
  "sort": [
    {
      "age": {
        "order": "asc"
      }
    }
  ]
}


# 不是所有字段都可以排序--->只能是数字字段

3、Elasticsearch之分页查询

# from 和 size,from表示偏移量,从0开始,size表示每页显示的数量

GET test_index/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "age": {
        "order": "desc"
      }
    }
  ], 
  "from": 3,
  "size": 2
}

4、Elasticsearch之布尔查询

#   must(and)  should(or)  must_not(not)    filter

# must条件  and条件
GET test_index/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            # 模糊查询
            "from": "sheng"
             #精确查询
            # "from.keyword": "sheng"
          }
        },
        {
          "match": {
            "age": 18
          }
        }
      ]
    }
  }
}


"""
# 咱们认为的and查询,但是实际不行
GET test_index/_search
{
  "query": {
    "match": {
      "from": "sheng",
      "age":18
    }
  }
}
"""


# shoud   or 条件---》搜索框,就是用它
GET test_index/_search
{
  "query": {
    "bool": {
      "should": [
        {
          "match": {
            "from": "sheng"
          }
        },
        {
          "match": {
            "age": 22
          }
        }
      ]
    }
  }
}



# must_not  既不是也不是
GET test_index/_search
{
  "query": {
    "bool": {
      "must_not": [
        {
          "match": {
            "from": "gu"
          }
        },
        {
          "match": {
            "tags": "可爱"
          }
        },
        {
          "match": {
            "age": 18
          }
        }
      ]
    }
  }
}



# 查询 from为gu,age大于25的数据怎么查 filter  /gt> lt< lte=
GET test_index/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "from": "gu"
          }
        }
      ],
      "filter": {
        "range": {
          "age": {
            "lt": 25
          }
        }
      }
    }
  }
}

# age字段等于40且state字段不包含ID的文档
GET test_index/_search
{
  "query": {
    "bool": {
      "must": [
        { "match": { "age": "40" } }
      ],
      "must_not": [
        { "match": { "state": "ID" } }
      ]
    }
  }
}

5、Elasticsearch之查询结果过滤

# 只查某几个字段

GET test_index/_search
{
  "query": {
    "match": {
      "name": "顾老二"
    }
  },
  "_source": ["name", "age"]
}

6、Elasticsearch之高亮查询

# 默认高亮
GET test_index/_search
{
  "query": {
    "match": {
      "name": "石头"
    }
  },
  "highlight": {
    "fields": {
      "name": {}
    }
  }
}


# 自定义高亮
GET test_index/_search
{
  "query": {
    "match": {
      "from": "gu"
    }
  },
  "highlight": {
    "pre_tags": "<b class='key' style='color:red'>",
    "post_tags": "</b>",
    "fields": {
      "from": {}
    }
  }
}

7、Elasticsearch之聚合函数

# avg   max   min   sum

# avg 求平均年龄
GET test_index/_search
{
  "query": {
    "match": {
      "from": "gu"
    }
  },
  "aggs": {
    "my_avg": {
      "avg": {
        "field": "age"
      }
    }
  },
  "_source": ["name", "age"]
}


# 对搜索结果进行聚合,使用aggs来表示,类似于MySql中的group by,例如对name字段进行聚合,统计出相同name的文档数量
GET test_index/_search
{
  // 不显示命中(hits)的所有文档信息
  "size": 0,
  "aggs": {
    "group_by_name": {
      "terms": {
        "field": "name.keyword"
      }
    }
  }
}
# 结果
{
  "took" : 170,
  "timed_out" : false,
  "_shards" : {
    "total" : 3,
    "successful" : 3,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 10000,
      "relation" : "gte"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "group_by_vin" : {
      "doc_count_error_upper_bound" : 33265,
      "sum_other_doc_count" : 1767999,
      "buckets" : [
        {
          "key" : "第1天签到",
          "doc_count" : 4123788
        },
        {
          "key" : "第2天签到",
          "doc_count" : 2237997
        },
        {
          "key" : "第3天签到",
          "doc_count" : 1842282
        },
        {
          "key" : "第4天签到",
          "doc_count" : 1615952
        },
        {
          "key" : "第5天签到",
          "doc_count" : 1466083
        },
        {
          "key" : "第6天签到",
          "doc_count" : 1365050
        },
        {
          "key" : "第7天签到",
          "doc_count" : 1275374
        },
        {
          "key" : "食材临期即时提醒",
          "doc_count" : 321093
        },
        {
          "key" : "解锁多种智能模式",
          "doc_count" : 289915
        },
        {
          "key" : "远程操控冰箱温度",
          "doc_count" : 282822
        }
      ]
    }
  }
}


# 嵌套聚合,例如对name字段进行聚合统计出相同name的文档数量,再统计出聚合之后的age的平均值
GET test_index/_search
{
  "size": 0,
  "aggs": {
    "group_by_name": {
      "terms": {
        "field": "name.keyword"
      },
      "aggs": {
        "average_age": {
          "avg": {
            "field": "age.keyword"
          }
        }
      }
    }
  }
}
# 结果
{
  "took" : 558,
  "timed_out" : false,
  "_shards" : {
    "total" : 3,
    "successful" : 3,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 10000,
      "relation" : "gte"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "group_by_vin" : {
      "doc_count_error_upper_bound" : 33265,
      "sum_other_doc_count" : 1767999,
      "buckets" : [
        {
          "key" : "第1天签到",
          "doc_count" : 4123788,
          "average_age" : {
            "value" : null
          }
        },
        {
          "key" : "第2天签到",
          "doc_count" : 2237997,
          "average_age" : {
            "value" : null
          }
        },
        {
          "key" : "第3天签到",
          "doc_count" : 1842282,
          "average_age" : {
            "value" : null
          }
        },
        {
          "key" : "第4天签到",
          "doc_count" : 1615952,
          "average_age" : {
            "value" : null
          }
        },
        {
          "key" : "第5天签到",
          "doc_count" : 1466083,
          "average_age" : {
            "value" : null
          }
        },
        {
          "key" : "第6天签到",
          "doc_count" : 1365050,
          "average_age" : {
            "value" : null
          }
        },
        {
          "key" : "第7天签到",
          "doc_count" : 1275374,
          "average_age" : {
            "value" : null
          }
        },
        {
          "key" : "食材临期即时提醒",
          "doc_count" : 321093,
          "average_age" : {
            "value" : null
          }
        },
        {
          "key" : "解锁多种智能模式",
          "doc_count" : 289915,
          "average_age" : {
            "value" : null
          }
        },
        {
          "key" : "远程操控冰箱温度",
          "doc_count" : 282822,
          "average_age" : {
            "value" : null
          }
        }
      ]
    }
  }
}



# 对聚合搜索的结果进行排序,例如对name字段进行聚合统计出相同name的文档数量,再统计出聚合之后的age的平均值,按age的平均值降序排列
GET test_index/_search
{
  "size": 0,
  "aggs": {
    "group_by_vin": {
      "terms": {
        "field": "name.keyword",
        "order": {
          "average_age": "desc"
        }
      },
      "aggs": {
        "average_age": {
          "avg": {
            "field": "age.keyword"
          }
        }
      }
    }
  }
}



# 按字段值的范围进行分段聚合,例如分段范围为age字段的[20,30] [30,40] [40,50],之后按gender统计文档个数和balance的平均值
GET test_index/_search
{
  "size": 0,
  "aggs": {
    "group_by_age": {
      "range": {
        "field": "age",
        "ranges": [
          {
            "from": 20,
            "to": 30
          },
          {
            "from": 30,
            "to": 40
          },
          {
            "from": 40,
            "to": 50
          }
        ]
      },
      "aggs": {
        "group_by_gender": {
          "terms": {
            "field": "gender.keyword"
          },
          "aggs": {
            "average_balance": {
              "avg": {
                "field": "balance.keyword"
              }
            }
          }
        }
      }
    }
  }
}

# 根据name进行分组,并且取前20个
GET test_index/_search
{
  "size": 0,
  "aggs": {
    "group_by_vin": {
      "terms": {
        "field": "name.keyword",
        # 取前20个
        "size": 20
        }
      }
    }
  }
}

# 多个平行聚合
GET test_index/_search
{
  "size": 0,
  "aggs": {
      "my-agg-name": {
          "terms": {
            "field": "requestUrl.keyword",
            "size": 5
          }
      },
      "my-agg-name2": {
          "terms": {
            "field": "requestHeader.clientId.keyword",
            "size": 5
          }
      }
    }
}
# 结果
{
  "took" : 6180,
  "timed_out" : false,
  "num_reduce_phases" : 2,
  "_shards" : {
    "total" : 624,
    "successful" : 624,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 10000,
      "relation" : "gte"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "my-agg-name2" : {
      "doc_count_error_upper_bound" : 9661,
      "sum_other_doc_count" : 89146934,
      "buckets" : [
        {
          "key" : "callcenter",
          "doc_count" : 147486013
        },
        {
          "key" : "duomai",
          "doc_count" : 49268821
        },
        {
          "key" : "service_employee",
          "doc_count" : 42791694
        }
      ]
    },
    "my-agg-name" : {
      "doc_count_error_upper_bound" : 1819770,
      "sum_other_doc_count" : 236828042,
      "buckets" : [
        {
          "key" : "/api/ecoc/v1/kafkaSend/duoMaiExcute",
          "doc_count" : 49263156
        },
        {
          "key" : "/api/admin/oauth/token",
          "doc_count" : 48386545
        },
        {
          "key" : "/api/dss/userLable/v2/getUserLable",
          "doc_count" : 42795064
        }
      ]
    }
  }
}

# 根据requestUrl进行分组,只取前10个,然后对每个没组里的数据按照@timestamp倒序排列取一条数据(数据里包含requestTime,requestUrl,requestHeader.clientId三个字段),对10条数据分页查询,每页2条;统计所有不同requestUrl的数量
GET rest_logs-*/_search
{
    "query": {
      "match_all": {}  
    },
    "aggs": {
      	# 统计所有requestUrl不同的总数
        "count": {
            "cardinality": {
                "field": "requestUrl.keyword"
            }
        },
        "requestUrl_agg": {
            "terms": {
              	# 按照requestUrl分组
                "field": "requestUrl.keyword",
              	# 取10条
                "size": 10,
              	# 按照分组里的数量倒序排列
          			# 如果是按照分组字段排序,则使用_key
                "order": {
                  "_count": "desc"
                }
            },
            "aggs": {
              	# 自定义名称
                "group_sort": {
                    "top_hits": {
              					# 排序
                        "sort": [
                            {
              									# 分组里按照@timestamp倒序排列
                                "@timestamp": {
                                    "order": "desc"
                                }
                            }
                        ],
												# 分组里的数据,排序后取值的字段
                        "_source": {
                          "includes": [
                            "requestTime",
                            "requestUrl",
                            "requestHeader.clientId"
                            ]
                        }, 
												# 取一条数据,不取一条会报错
												# 报的错:numHits must be > 0; please use TotalHitCountCollector if you just need the total hit count
                        "size": 1
                    }
                },
								# 分页查询
                "bucket_sort": {
                    "bucket_sort": {
                        "sort": [],
                      	# 从哪个位置开始取,offset
                        "from": 0,
                      	# 每页的数量
                        "size": 2
                    }
                }
            }  
        }
    },
		# 此处的size和from没用了
    "size": 0,
    "from": 0
}
# 结果
{
  "took" : 3719,
  "timed_out" : false,
  "num_reduce_phases" : 2,
  "_shards" : {
    "total" : 624,
    "successful" : 624,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 10000,
      "relation" : "gte"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "count" : {
      "value" : 221
    },
    "requestUrl_agg" : {
      "doc_count_error_upper_bound" : 121353,
      "sum_other_doc_count" : 57937638,
      "buckets" : [
        {
          "key" : "/api/admin/oauth/token",
          "doc_count" : 49542152,
          "group_sort" : {
            "hits" : {
              "total" : {
                "value" : 49542152,
                "relation" : "eq"
              },
              "max_score" : null,
              "hits" : [
                {
                  "_index" : "rest_logs-2023.01.05",
                  "_type" : "_doc",
                  "_id" : "kxcNgYUBn8gePaBo6-bM",
                  "_score" : null,
                  "_source" : {
                    "requestTime" : "2023-01-05 16:30:51",
                    "requestUrl" : "/api/admin/oauth/token"
                  },
                  "sort" : [
                    1672907451313
                  ]
                }
              ]
            }
          }
        },
        {
          "key" : "/api/ecoc/v1/kafkaSend/duoMaiExcute",
          "doc_count" : 49333145,
          "group_sort" : {
            "hits" : {
              "total" : {
                "value" : 49333145,
                "relation" : "eq"
              },
              "max_score" : null,
              "hits" : [
                {
                  "_index" : "rest_logs-2023.01.05",
                  "_type" : "_doc",
                  "_id" : "ghcNgYUBn8gePaBo6-bM",
                  "_score" : null,
                  "_source" : {
                    "requestTime" : "2023-01-05 16:30:51",
                    "requestUrl" : "/api/ecoc/v1/kafkaSend/duoMaiExcute",
                    "requestHeader" : {
                      "clientId" : [
                        "duomai"
                      ]
                    }
                  },
                  "sort" : [
                    1672907451132
                  ]
                }
              ]
            }
          }
        }
      ]
    }
  }
}

8、创建更新删除操作

8.1、创建索引并查看

PUT test_index
GET /_cat/indices?v

8.2、删除索引并查看

DELETE test_index
GET /_cat/indices?v
8.3、查看文档类型
GET test_index/_mapping
8.4、在索引中添加文档
PUT test_index/1
{
  "vin": "B1293049555"
}
8.5、在索引中查看文档
GET /decode/resolve/1
8.6、在索引中修改文档
POST test_index/1/_update
{
  "doc": { "vin": "A1299405555" }
}
8.7、在索引中删除文档
DELETE test_index/1
8.8、在索引中批量操作文档
POST test_index/_bulk
{"index":{"_id":"1"}}
{"name": "aaaa" }
{"index":{"_id":"2"}}
{"name": "bbbb" }
8.9、创建一个数据模型样例(包含index、type、field):
PUT test_index
{
    "settings":{
        "index":{
            "number_of_shards":3,
            "number_of_replicas":0
        }
    },
    "mappings":{
        "resolve":{
            "properties":{
                "id":{
                    "type":"keyword"
                },
                "name":{
                    "type":"keyword"
                },
                "gender":{
                    "type":"keyword"
                },
                "carBrandId":{
                    "type":"text"
                },
                "balance":{
                    "type":"int"
                },
                "age":{
                    "type":"int"
                },
                "address":{
                    "type":"keyword"
                },
                "craeteTime":{
                    "type":"date"
                },
                "statusId":{
                    "type":"keyword"
                },
                "enable":{
                    "type":"boolean"
                }
            }
        }
    }
}

8.10、Elasticsearch给type增加一项field

PUT test_index/_mapping
{
 "properties": {
   "fieldName":{
     "type":"boolean"
   }
 }
}

PUT test_index/_mappings
{
 "properties": {
   "fieldName":{
     "type":"boolean"
   }
 }
}

https://zhuanlan.zhihu.com/p/521027165

https://blog.csdn.net/qq_41911898/article/details/110089644

标签:count,index,doc,age,查询,语法,match,test,es
From: https://www.cnblogs.com/eternityz/p/17039201.html

相关文章