题目
题目描述
In ICPCCamp there were n towns conveniently numbered with \(1, 2, \dots, n\)
connected with (n - 1) roads.
The i-th road connecting towns aia_iai and bib_ibi has length \(c_i\) .
It is guaranteed that any two cities reach each other using only roads.
Bobo would like to build (n - 1) highways so that any two towns reach each using only highways.
Building a highway between towns x and y costs him \(\delta(x, y)\) cents,
where \(\delta(x, y)\) is the length of the shortest path between towns x and y using roads.
As Bobo is rich, he would like to find the most expensive way to build the (n - 1) highways.
输入描述
The input contains zero or more test cases and is terminated by end-of-file. For each test case:
The first line contains an integer n.
The i-th of the following (n - 1) lines contains three integers aia_iai, bib_ibi and cic_ici.
- \(1 \leq n \leq 10^5\)
- \(1 \leq a_i, b_i \leq n\)
- \(1 \leq c_i \leq 10^8\)
- The number of test cases does not exceed 10.
输出描述
For each test case, output an integer which denotes the result.
示例1
输入
5
1 2 2
1 3 1
2 4 2
3 5 1
5
1 2 2
1 4 1
3 4 1
4 5 2
输出
19
15
题解
知识点:DFS,树的直径。
重修 \(n-1\) 条路,使得花费和最大,每条路的花费是两端原先的最短路。
容易证明,只要以树的直径两端为道路的一端连接其他点,即可最大化花费。因此,先通过两次dfs找到树的直径端点,然后遍历每个点取距离最远的一端即可。
时间复杂度 \(O(n+m)\)
空间复杂度 \(O(n+m)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
template<class T>
struct Graph {
struct edge {
int v, nxt;
T w;
};
int idx;
vector<int> h;
vector<edge> e;
Graph(int n, int m) :idx(0), h(n + 1), e(m + 1) {}
void clear(int n, int m) {
idx = 0;
h.assign(n + 1, 0);
e.assign(m + 1, { 0,0,0 });
}
void add(int u, int v, T w) {
e[++idx] = edge{ v,h[u],w };
h[u] = idx;
}
};
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
while (cin >> n) {
Graph<int> g(n, n << 1);
for (int i = 2;i <= n;i++) {
int u, v, w;
cin >> u >> v >> w;
g.add(u, v, w);
g.add(v, u, w);
}
function<void(int, int, vector<ll> &)> dfs = [&](int u, int fa, vector<ll> &dis) {
for (int i = g.h[u];i;i = g.e[i].nxt) {
int v = g.e[i].v, w = g.e[i].w;
if (v == fa) continue;
dis[v] = dis[u] + w;
dfs(v, u, dis);
}
};
vector<ll> dis(n + 1);
dfs(1, 0, dis);
int pos1 = 0;
for (int i = 1;i <= n;i++)
if (dis[i] > dis[pos1]) pos1 = i;
vector<ll> dis1(n + 1);
dfs(pos1, 0, dis1);
int pos2 = 0;
for (int i = 1;i <= n;i++)
if (dis1[i] > dis1[pos2]) pos2 = i;
vector<ll> dis2(n + 1);
dfs(pos2, 0, dis2);
ll ans = dis1[pos2];
for (int i = 1;i <= n;i++) {
if (i == pos1 || i == pos2) continue;
ans += max(dis1[i], dis2[i]);
}
cout << ans << '\n';
}
return 0;
}
标签:NC52867,int,dfs,leq,vector,pos2,Highway,dis
From: https://www.cnblogs.com/BlankYang/p/17021930.html