首页 > 其他分享 >[Spark基础]-- spark submmit大会(2017年6月5日 - 7日)

[Spark基础]-- spark submmit大会(2017年6月5日 - 7日)

时间:2023-01-02 22:00:24浏览次数:58  
标签:00 12 -- AM Apache submmit 2017 Spark PM


Spark Summit(2017年6月5日 - 7日,旧金山)议程发布

 

1、官方:​​http://spark.apache.org/news/spark-summit-june-2017-agenda-posted.html​

2、议程:​​https://spark-summit.org/2017/schedule/​

3、报名:​​https://prevalentdesignevents.com/sparksummit/ss17/?_ga=1.211902866.780052874.1433437196​

很高兴的是有2位中国企业的工程师:

 

 

 

4、内容如下

  • DAY 1 • MONDAY, JUNE 5 • TRAINING DAY

7:00 AM

Registration

 

TRAINING ROOM 1

TRAINING ROOM 2

TRAINING ROOM 3

TRAINING ROOM 4

TRAINING ROOM 5

TRAINING ROOM 6

TRAINING ROOM 7

9:00 AM

​Training: Data Science With Apache Spark 2.x​

(9:00 AM–12:00 PM)

​Training: Exploring Wikipedia 2 With Apache Spark 2.x​

(9:00 AM–12:00 PM)

​Training: Apache Spark Intro for Machine Learning and Data Science​

(9:00 AM–12:00 PM)

​Training: Apache Spark Intro for Data Engineering​

(9:00 AM–12:00 PM)

​Training: Just Enough Scala for Spark​

(9:00 AM–12:00 PM)

​Training: Architecting a Data Platform​

(9:00 AM–12:00 PM)

​Training: Building Your First Big Data Application on AWS​

(9:00 AM–12:00 PM)

12:00 PM

Lunch

 

TRAINING ROOM 1

TRAINING ROOM 2

TRAINING ROOM 3

TRAINING ROOM 4

TRAINING ROOM 5

TRAINING ROOM 6

TRAINING ROOM 7

1:00 PM

​Training: Data Science With Apache Spark 2.x​

(1:00 PM–5:00 PM)

​Training: Exploring Wikipedia 2 With Apache Spark 2.x​

(1:00 PM–5:00 PM)

​Training: Apache Spark Intro for Machine Learning and Data Science​

(1:00 PM–5:00 PM)

​Training: Apache Spark Intro for Data Engineering​

(1:00 PM–5:00 PM)

​Training: Just Enough Scala for Spark​

(1:00 PM–5:00 PM)

​Training: Architecting a Data Platform​

(1:00 PM–5:00 PM)

​Training: Building Your First Big Data Application on AWS​

(1:00 PM–5:00 PM)

6:00 PM

​Meetup​

Join us for an evening Bay Area Apache Spark Meetup at the 10th Spark Summit featuring tech-talks about using Apache 

Spark at scale from Pepperdata’s CTO Sean Suchter, RISELab’s Dan Crankshaw, and Databricks’ Spark committers… ​​Read more​

 

DAY 2 • TUESDAY, JUNE 6 • DEVELOPER DAY

7:00 AM

Registration

9:05 AM

​What to Expect in 2017 for Big Data and Apache Spark​

9:30 AM

​Snorkel: Dark Data and Machine Learning​

Building applications that can read and analyze a wide variety of data may change the way we do science and make business decisions. 

However, building such applications is challenging: real world data is expressed in… ​​Read more​

9:45 AM

​Unleashing Data Intelligence with Intel and Apache Spark​

Organizations are developing deep learning applications to derive new insights, identify new opportunities and uncover new efficiencies.

 However, deep learning application development often means tapping into multiple frameworks, libraries, and clusters—a complex, 

time-consuming, and costly… ​​Read more​

9:55 AM

​Rise Lab Fireside Chat​

Ben Lorica and Ion Stoica discuss the growth and new projects taking place at Rise Lab.

10:15 AM

​Keynote by Riot Games​

10:30 AM

Break

 

ROOM 1

ROOM 2

ROOM 3

ROOM 4

ROOM 5

ROOM 6

ROOM 7

ROOM 8

ROOM 9

11:00 AM

DEVELOPER

​A Deep Dive into Spark SQL's Catalyst Optimizer​

(11:00 AM–11:30 AM)

MACHINE LEARNING

​Challenging Web-Scale Graph Analytics with Apache Spark​

(11:00 AM–11:30 AM)

SPARK ECOSYSTEM

​Analyzing IOT Data in Apache Spark Across Data Centers and Cloud with NetApp Data Fabric and NetApp Private Storage​

(11:00 AM–11:30 AM)

SPARK EXPERIENCE AND USE CASES

​Scaling Up: How Switching to Apache Spark Improved Performance, Realizability, and Reduced Cost ​

​on a Very Large Scale ML Application​

(11:00 AM–11:30 AM)

ENTERPRISE

​Spark Compute as a Service at Paypal​

(11:00 AM–11:30 AM)

STREAMING

​SSR: Structured Streaming on R for Machine Learning​

(11:00 AM–11:30 AM)

RESEARCH

​Scaling Genetic Data Analysis with Apache Spark​

(11:00 AM–11:30 AM)

SPONSORED SESSIONS

TBA

(11:00 AM–11:30 AM)

TECHNICAL DEEP DIVES

​Data Science Deep Dive: Spark ML with High Dimensional Labels​

(11:00 AM–11:30 AM)

11:40 AM

DEVELOPER

​TensorFlowOnSpark: Scalable TensorFlow Learning on Spark Clusters​

(11:40 AM–12:10 PM)

MACHINE LEARNING

​Needle in the Haystack—User Behavior Anomaly Detection for Information Security​

(11:40 AM–12:10 PM)

SPARK ECOSYSTEM

​Apache Kylin: Speed Up Cubing with Apache Spark​

(11:40 AM–12:10 PM)

SPARK EXPERIENCE AND USE CASES

​Incremental Processing on Large Analytical Datasets​

(11:40 AM–12:10 PM)

ENTERPRISE

​Using SparkML to Power a DSaaS (Data Science as a Service)​

(11:40 AM–12:10 PM)

STREAMING

​Structured-Streaming-as-a-Service with Kafka, YARN, and Tooling​

(11:40 AM–12:10 PM)

RESEARCH

​Lazy Join Optimizations Without Upfront Statistics​

(11:40 AM–12:10 PM)

SPONSORED SESSIONS

TBA

(11:40 AM–12:10 PM)

TECHNICAL DEEP DIVES

​Data Science Deep Dive: Spark ML with High Dimensional Labels (continues)​

(11:40 AM–12:10 PM)

12:20 PM

DEVELOPER

​Hive Bucketing in Apache Spark​

(12:20 PM–12:50 PM)

MACHINE LEARNING

​Random Walks on Large Scale Graphs with Apache Spark​

(12:20 PM–12:50 PM)

SPARK ECOSYSTEM

​Building a Unified Data Pipeline with Apache Spark and XGBoost​

(12:20 PM–12:50 PM)

SPARK EXPERIENCE AND USE CASES

​How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2.x​

(12:20 PM–12:50 PM)

ENTERPRISE

​How Apache Spark and AI Powers UberEats​

(12:20 PM–12:50 PM)

STREAMING

​The Top Five Mistakes Made When Writing Streaming Applications​

(12:20 PM–12:50 PM)

RESEARCH

​Running Apache Spark on a High-Performance Cluster Using RDMA and NVMe Flash​

(12:20 PM–12:50 PM)

SPONSORED SESSIONS

TBA

(12:20 PM–12:50 PM)

TECHNICAL DEEP DIVES

​Ray: A Cluster Computing Engine for Reinforcement Learning Applications​

(12:20 PM–12:50 PM)

12:50 PM

Lunch

 

ROOM 1

ROOM 2

ROOM 3

ROOM 4

ROOM 5

ROOM 6

ROOM 7

ROOM 8

ROOM 9

2:00 PM

DEVELOPER

​Apache Spark MLlib's Past Trajectory and New Directions​

(2:00 PM–2:30 PM)

MACHINE LEARNING

​Extending Spark Machine Learning: Adding Your Own Algorithms and Tools​

(2:00 PM–2:30 PM)

SPARK ECOSYSTEM

​Building Data Product Based on Apache Spark at Airbnb​

(2:00 PM–2:30 PM)

SPARK EXPERIENCE AND USE CASES

​Building a Versatile Analytics Pipeline on Top of Apache Spark​

(2:00 PM–2:30 PM)

ENTERPRISE

​Herding Cats: Migrating Dozens of Oddball Analytics Systems to Apache Spark​

(2:00 PM–2:30 PM)

STREAMING

​Real-Time Machine Learning Analytics Using Structured Streaming and Kinesis Firehose​

(2:00 PM–2:30 PM)

RESEARCH

​Matrix Factorizations at Scale: a Comparison of Scientific Data Analytics on Spark and MPI Using Three Case Studies​

(2:00 PM–2:30 PM)

SPONSORED SESSIONS

TBA

(2:00 PM–2:30 PM)

TECHNICAL DEEP DIVES

​Cost-Based Optimizer in Apache Spark 2.2​

(2:00 PM–2:30 PM)

2:40 PM

DEVELOPER

​Informational Referential Integrity Constraints Support in Apache Spark​

(2:40 PM–3:10 PM)

MACHINE LEARNING

​Fuzzy Matching on Apache Spark​

(2:40 PM–3:10 PM)

SPARK ECOSYSTEM

​Extending the R API for Spark with sparklyr and Microsoft R Server​

(2:40 PM–3:10 PM)

SPARK EXPERIENCE AND USE CASES

​Best Practices for Using Alluxio with Apache Spark​

(2:40 PM–3:10 PM)

ENTERPRISE

​Scaling Data Science Capabilities with Apache Spark at Stitch Fix​

(2:40 PM–3:10 PM)

STREAMING

​A Practical Approach to Building a Streaming Processing Pipeline for an Online Advertising Platform​

(2:40 PM–3:10 PM)

RESEARCH

​Apache Spark on Supercomputers: A Tale of the Storage Hierarchy​

(2:40 PM–3:10 PM)

SPONSORED SESSIONS

TBA

2:40 PM (2:40 PM–2:55 PM)

SPONSORED SESSIONS

TBA

2:55 PM (2:55 PM–3:10 PM)

TECHNICAL DEEP DIVES

​Cost-Based Optimizer in Apache Spark 2.2 (continues)​

(2:40 PM–3:10 PM)

3:20 PM

DEVELOPER

​Tricks of the Trade to be an Apache Spark Rock Star​

(3:20 PM–3:50 PM)

MACHINE LEARNING

​Assigning Responsibility for Deteriorations in Video Quality​

(3:20 PM–3:50 PM)

SPARK ECOSYSTEM

​Apache Spark on Kubernetes​

(3:20 PM–3:50 PM)

SPARK EXPERIENCE AND USE CASES

​Experiences Migrating Hive Workload to SparkSQL​

(3:20 PM–3:50 PM)

ENTERPRISE

​Transforming B2B Sales with Spark-Powered Sales Intelligence​

(3:20 PM–3:50 PM)

STREAMING

​An Online Spark Pipeline: Semi-Supervised Learning and Automatic Retraining with Spark Streaming​

(3:20 PM–3:50 PM)

RESEARCH

​Flare: Scale Up Spark SQL with Native Compilation and Set Your Data on Fire!​

(3:20 PM–3:50 PM)

SPONSORED SESSIONS

TBA

3:20 PM (3:20 PM–3:35 PM)

SPONSORED SESSIONS

TBA

3:35 PM (3:35 PM–3:50 PM)

TECHNICAL DEEP DIVES

TBA

(3:20 PM–3:50 PM)

3:50 PM

Break

 

ROOM 1

ROOM 2

ROOM 3

ROOM 4

ROOM 5

ROOM 6

ROOM 7

ROOM 8

ROOM 9

4:20 PM

DEVELOPER

​Improving Python and Spark Performance and Interoperability with Apache Arrow​

(4:20 PM–4:50 PM)

MACHINE LEARNING

​Multi-Label Graph Analysis and Computations Using GraphX​

(4:20 PM–4:50 PM)

SPARK ECOSYSTEM

​More Algorithms and Tools for Genomic Analysis on Apache Spark​

(4:20 PM–4:50 PM)

SPARK EXPERIENCE AND USE CASES

​Lessons Learned from Managing Thousands of Production Apache Spark Clusters Daily​

(4:20 PM–4:50 PM)

ENTERPRISE

​GoDaddy Customer Success Dashboard Using Apache Spark​

(4:20 PM–4:50 PM)

STREAMING

​Dynamic DDL: Adding Structure to Streaming Data on the Fly​

(4:20 PM–4:50 PM)

RESEARCH

​Microservices and Teraflops: Effortlessly Scaling Data Science with PyWren​

(4:20 PM–4:50 PM)

SPONSORED SESSIONS

TBA

4:20 PM (4:20 PM–4:35 PM)

SPONSORED SESSIONS

TBA

4:35 PM (4:35 PM–4:50 PM)

TECHNICAL DEEP DIVES

​Easy, Scalable, Fault-Tolerant Stream Processing with Structured Streaming in Apache Spark​

(4:20 PM–4:50 PM)

5:00 PM

DEVELOPER

​Building Robust ETL Pipelines with Apache Spark​

(5:00 PM–5:30 PM)

MACHINE LEARNING

​Visualization of Enhanced Spark Induced Naive Bayes Classifier​

(5:00 PM–5:30 PM)

SPARK ECOSYSTEM

​Spark HBase Connector: Feature Rich and Efficient Access to HBase Through Spark SQL​

(5:00 PM–5:30 PM)

SPARK EXPERIENCE AND USE CASES

​From Python Scikit-learn to Scala Apache Spark—The Road to Uncovering Botnets​

(5:00 PM–5:30 PM)

ENTERPRISE

​Applying Machine Learning to Construction​

(5:00 PM–5:30 PM)

STREAMING

​Building Continuous Application with Structured Streaming and Real-Time Data Source​

(5:00 PM–5:30 PM)

RESEARCH

​Speeding Up Spark with Data Compression on Xeon+FPGA​

(5:00 PM–5:30 PM)

SPONSORED SESSIONS

TBA

5:00 PM (5:00 PM–5:15 PM)

SPONSORED SESSIONS

TBA

5:15 PM (5:15 PM–5:30 PM)

TECHNICAL DEEP DIVES

​Easy, Scalable, Fault-Tolerant Stream Processing with Structured Streaming in Apache Spark (continues)​

(5:00 PM–5:30 PM)

5:40 PM

DEVELOPER

​Behavior-Driven Development (BDD) Testing with Apache Spark​

(5:40 PM–6:10 PM)

MACHINE LEARNING

​The Key to Machine Learning is Prepping the Right Data​

(5:40 PM–6:10 PM)

SPARK ECOSYSTEM

​Building a Large Scale Recommendation Engine with Spark and Redis-ML​

(5:40 PM–6:10 PM)

SPARK EXPERIENCE AND USE CASES

​Apache Spark and Citizen Science: Using eBird Data to Predict Bird Abundance at Scale​

(5:40 PM–6:10 PM)

ENTERPRISE

​Rental Cars and Industrialized Learning to Rank​

(5:40 PM–6:10 PM)

STREAMING

​Scalable Monitoring Using Apache Spark and Friends​

(5:40 PM–6:10 PM)

RESEARCH

​Accelerating SparkML Workloads on the Intel Xeon+FPGA Platform​

(5:40 PM–6:10 PM)

SPONSORED SESSIONS

TBA

(5:40 PM–6:10 PM)

TECHNICAL DEEP DIVES

TBA

(5:40 PM–6:10 PM)

6:10 PM

​Attendee Reception​

Have fun mingling with other attendees over hors d’oeuvres and cocktails as you tour the Spark Summit Expo Hall.

 

DAY 3 • WEDNESDAY, JUNE 7 • ENTERPRISE DAY

8:00 AM

Registration

9:00 AM

​Databricks Keynote​

9:40 AM

​Keynote-TBA​

9:55 AM

​Keynote by Hotels.com​

10:10 AM

​Cutting Edge Predictive Analytics​

Apache Spark empowers predictive analytics and machine learning by increasing the reach and potential.

 But, before jumping to new deployments, it’s critical we 1) get the analytics right and 2) not overlook 

less conspicuous business… ​​Read more​

10:30 AM

Break

 

ROOM 1

ROOM 2

ROOM 3

ROOM 4

ROOM 5

ROOM 6

ROOM 7

ROOM 8

ROOM 9

11:00 AM

DEVELOPER

​Dr. Elephant for Monitoring and Tuning Apache Spark Jobs on Hadoop​

(11:00 AM–11:30 AM)

MACHINE LEARNING

​Embracing a Taxonomy of Types to Simplify Machine Learning​

(11:00 AM–11:30 AM)

SPARK ECOSYSTEM

​HDFS on Kubernetes—Lessons Learned​

(11:00 AM–11:30 AM)

SPARK EXPERIENCE AND USE CASES

​Spinach: Providing Ad-Hoc Query Support on Top of Spark SQL​

(11:00 AM–11:30 AM)

ENTERPRISE

​Archiving, E-Discovery, and Supervision with Spark and Hadoop​

(11:00 AM–11:30 AM)

DATA SCIENCE

​Yelp Ad Targeting at Scale with Apache Spark​

(11:00 AM–11:30 AM)

RESEARCH

​Debugging Big Data Analytics in Apache Spark with BigDebug​

(11:00 AM–11:30 AM)

SPONSORED SESSIONS

TBA

(11:00 AM–11:30 AM)

TECHNICAL DEEP DIVES

​Deep Dive Into Apache Spark Multi-User Performance​

(11:00 AM–11:30 AM)

11:40 AM

DEVELOPER

​Productive Use of the Apache Spark Prompt​

(11:40 AM–12:10 PM)

MACHINE LEARNING

​Identify Disease-Associated Genetic Variants Via 3D Genomics Structure and Regulatory Landscapes Using Deep Learning Frameworks​

(11:40 AM–12:10 PM)

SPARK ECOSYSTEM

​Homologous Apache Spark Clusters Using Nomad​

(11:40 AM–12:10 PM)

SPARK EXPERIENCE AND USE CASES

​Social Media, Spark, Machine Learning, and Data Visualization to Find Patterns and Insight​

(11:40 AM–12:10 PM)

ENTERPRISE

​Next Generation Workshop Car Diagnostics at BMW Powered by Apache Spark​

(11:40 AM–12:10 PM)

DATA SCIENCE

​Data Wrangling with PySpark for Data Scientists Who Know Pandas​

(11:40 AM–12:10 PM)

RESEARCH

​Building Genomic Data Processing and Machine Learning Workflows Using Apache Spark​

(11:40 AM–12:10 PM)

SPONSORED SESSIONS

TBA

(11:40 AM–12:10 PM)

TECHNICAL DEEP DIVES

​Deep Dive Into Apache Spark Multi-User Performance (continues)​

(11:40 AM–12:10 PM)

12:20 PM

DEVELOPER

​Taking Jupyter Notebooks and Apache Spark to the Next Level PixieDust​

(12:20 PM–12:50 PM)

MACHINE LEARNING

​Large-Scale Ads CTR Prediction with Spark and Deep Learning: Lessons Learned​

(12:20 PM–12:50 PM)

SPARK ECOSYSTEM

​Interoperating a Zoo of Data Processing Platforms Using Rheem​

(12:20 PM–12:50 PM)

SPARK EXPERIENCE AND USE CASES

​Spark, GraphX, and Blockchains: Building a Behavioral Analytics Platform for Forensics, Fraud, and Finance​

(12:20 PM–12:50 PM)

ENTERPRISE

​Big Data at Audi: Root Cause Analysis in an Automotive Paint Shop Using MLlib​

(12:20 PM–12:50 PM)

DATA SCIENCE

​Smart Scalable Feature Reduction With Random Forests​

(12:20 PM–12:50 PM)

RESEARCH

​Neuro-Symbolic AI for Sentiment Analysis​

(12:20 PM–12:50 PM)

SPONSORED SESSIONS

​Women in Big Data Lunch​

(12:20 PM–12:50 PM)

TECHNICAL DEEP DIVES

​From Pipelines to Refineries: Building Complex Data Applications with Apache Spark​

(12:20 PM–12:50 PM)

12:50 PM

Lunch

 

ROOM 1

ROOM 2

ROOM 3

ROOM 4

ROOM 5

ROOM 6

ROOM 7

ROOM 8

ROOM 9

2:00 PM

DEVELOPER

​Improving Apache Spark with S3​

(2:00 PM–2:30 PM)

MACHINE LEARNING

​Building Competing Models Using Apache Spark DataFrames​

(2:00 PM–2:30 PM)

SPARK ECOSYSTEM

​Cassandra and SparkSQL: You Don't Need Functional Programming for Fun​

(2:00 PM–2:30 PM)

SPARK EXPERIENCE AND USE CASES

​Tuning Apache Spark for Large-Scale Workloads​

(2:00 PM–2:30 PM)

ENTERPRISE

​From Data to Actions and Insights at Conviva​

(2:00 PM–2:30 PM)

DATA SCIENCE

​Fully-Reproducible ML Deployment with Spark, Pachyderm, and MLeap​

(2:00 PM–2:30 PM)

DATA SCIENCE

​Natural Language Processing with CNTK and Apache Spark​

(2:00 PM–2:30 PM)

SPONSORED SESSIONS

TBA

(2:00 PM–2:30 PM)

TECHNICAL DEEP DIVES

​Sparklyr: Recap, Updates, and Use Cases​

(2:00 PM–2:30 PM)

2:40 PM

DEVELOPER

​Demystifying DataFrame and Dataset​

(2:40 PM–3:10 PM)

MACHINE LEARNING

​Real-Time Image Recognition with Apache Spark​

(2:40 PM–3:10 PM)

SPARK ECOSYSTEM

​Applying SparkSQL to Big Spatio-Temporal Data Using GeoMesa​

(2:40 PM–3:10 PM)

SPARK EXPERIENCE AND USE CASES

​Performance Optimization of Recommendation Training Pipeline at Netflix​

(2:40 PM–3:10 PM)

ENTERPRISE

​Changing the Way Viacom Looks at Video Performance​

(2:40 PM–3:10 PM)

DATA SCIENCE

​Large-Scaled Insurance Analytics Using Tweedie Models in Apache Spark​

(2:40 PM–3:10 PM)

DATA SCIENCE

​ADMM-Based Scalable Machine Learning on Apache Spark​

(2:40 PM–3:10 PM)

SPONSORED SESSIONS

TBA

(2:40 PM–3:10 PM)

TECHNICAL DEEP DIVES

​Sparklyr: Recap, Updates, and Use Cases (continues)​

(2:40 PM–3:10 PM)

3:20 PM

DEVELOPER

​Apache Spark and Apache Ignite: Where Fast Data Meets the IoT​

(3:20 PM–3:50 PM)

MACHINE LEARNING

​No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark​

(3:20 PM–3:50 PM)

SPARK ECOSYSTEM

​Just-in-Time Analytics and the Need for Autonomous Database Administration​

(3:20 PM–3:50 PM)

SPARK EXPERIENCE AND USE CASES

​Machine Learning as a Service: Apache Spark MLlib Enrichment and Web-Based Codeless Modeling​

(3:20 PM–3:50 PM)

ENTERPRISE

​Leveraging Apache Spark to Disrupt Airline Pricing Distribution​

(3:20 PM–3:50 PM)

DATA SCIENCE

​Write Graph Algorithms Like a Boss​

(3:20 PM–3:50 PM)

DATA SCIENCE

​A Predictive Analytics Workflow on DICOM Images using Apache Spark​

(3:20 PM–3:50 PM)

SPONSORED SESSIONS

TBA

(3:20 PM–3:50 PM)

TECHNICAL DEEP DIVES

TBA

(3:20 PM–3:50 PM)

3:50 PM

Break

 

ROOM 1

ROOM 2

ROOM 3

ROOM 4

ROOM 5

ROOM 6

ROOM 7

ROOM 8

ROOM 9

4:20 PM

DEVELOPER

​A Developer’s View into Spark's Memory Model​

(4:20 PM–4:50 PM)

MACHINE LEARNING

​Deep Learning in Security—Are We Ready?​

(4:20 PM–4:50 PM)

SPARK ECOSYSTEM

​Getting Ready to Use Redis with Apache Spark​

(4:20 PM–4:50 PM)

SPARK EXPERIENCE AND USE CASES

​Why You Should Care about Data Layout in the Filesystem​

(4:20 PM–4:50 PM)

ENTERPRISE

​Leveraging Spark in Ecommerce Platform to Democratize Data​

(4:20 PM–4:50 PM)

DATA SCIENCE

​Using AI for Providing Insights and Recommendations on Activity Data​

(4:20 PM–4:50 PM)

DATA SCIENCE

​Apache SparkR Under the Hood: How to Debug your SparkR Applications​

(4:20 PM–4:50 PM)

SPONSORED SESSIONS

TBA

(4:20 PM–4:50 PM)

TECHNICAL DEEP DIVES

​Real-Time Machine Learning with Redis, Apache Spark, Tensor Flow, and more​

(4:20 PM–4:50 PM)

5:00 PM

DEVELOPER

​Continuous Application with FAIR Scheduler​

(5:00 PM–5:30 PM)

MACHINE LEARNING

​Deep Learning to Big Data Analytics on Apache Spark Using BigDL​

(5:00 PM–5:30 PM)

SPARK ECOSYSTEM

​From R Script to Production Using rsparkling​

(5:00 PM–5:30 PM)

SPARK EXPERIENCE AND USE CASES

​RubiOne: Apache Spark as the Backbone of a Retail Analytics Development Environment​

(5:00 PM–5:30 PM)

ENTERPRISE

​Stream All Things—Patterns of Modern Data Integration​

(5:00 PM–5:30 PM)

DATA SCIENCE

​NLP with MLlib: Global Empire-Building for Fun and Profit​

(5:00 PM–5:30 PM)

DATA SCIENCE

​Building Smart IoT Applications Using Spark​

(5:00 PM–5:30 PM)

SPONSORED SESSIONS

TBA

(5:00 PM–5:30 PM)

TECHNICAL DEEP DIVES

​Real-Time Machine Learning with Redis, Apache Spark, Tensor Flow, and more (continues)​

(5:00 PM–5:30 PM)

5:40 PM

DEVELOPER

​SparkOscope: Enabling Apache Spark Optimization through Cross Stack Monitoring​

(5:40 PM–6:10 PM)

MACHINE LEARNING

​Deep Learning with Apache Spark and GPUs​

(5:40 PM–6:10 PM)

SPARK ECOSYSTEM

​Distributed End-to-End Drug Similarity Analytics and Visualization Workflow​

(5:40 PM–6:10 PM)

SPARK EXPERIENCE AND USE CASES

​The Smart Data Warehouse: Goal-Based Data Production​

(5:40 PM–6:10 PM)

ENTERPRISE

TBA

(5:40 PM–6:10 PM)

DATA SCIENCE

​Very Large Data Files, Object Stores, and Deep Learning—Lessons Learned While Looking for Signs of Extra-Terrestrial Life​

(5:40 PM–6:10 PM)

DATA SCIENCE

​Semantic Search: Fast Results from Large, Non-Native Language Corpora​

(5:40 PM–6:10 PM)

SPONSORED SESSIONS

TBA

(5:40 PM–6:10 PM)

TECHNICAL DEEP DIVES

TBA

(5:40 PM–6:10 PM)

8:00 PM

​JOIN Party​

Come close out the 10th edition of Spark Summit at the JOIN attendee party. This rockin’ celebration includes drinks, games, 

DJs, dancing and a few fun surprises. In the coming weeks, we will announce even… ​​Read more​​​​Databricks​

 

 

 

标签:00,12,--,AM,Apache,submmit,2017,Spark,PM
From: https://blog.51cto.com/u_13966077/5984240

相关文章

  • java开发的美食菜谱网
    简介Java开发美食菜谱分享网站,健康专题分享,菜谱网源码。用户可以发布菜谱,可以评论,可以发布关于健康饮食的文章,还可以查看自己的主页。管理员可以管理所有的数据,审核数据。......
  • 【数学建模入门】TOPSIS法
    TOPSIS法背景知识TOPSIS法(TechniqueforOrderPreferencebySimilaritytoIdealSolution)可翻译为逼近理想解排序法,国内常简称为优劣解距离法与层次分析法相比,topsi......
  • Web APIs 简介
    WebAPIs简介目录WebAPIs简介1.WebAPIs和JS基础关联性1.1JS的组成1.2JS基础阶段以及WebAPIs阶段2.API和WebAPI2.2WebAPI学习目标:WebAPIs和JS......
  • 1.2复习了一下MySQL的索引
    今天又复习了一下索引,做一个总结吧主要就是复习了索引分类概念,索引使用,SQL优化等三个方面1.主键索引,唯一索引,常规索引;对于唯一索引,同一个表中可以创建多个,用作创建唯一......
  • dremio ClassPathScanner 简单说明
    ClassPathScanner实际上是dremio基于配置+约定的类扫描处理,为了性能同时使用了开源的reflections工具包约定主要扫描包含以下约定key的类或者包/**Confi......
  • bbs
    项目开发基本流程1.需求分析2.架构设计3.分组开发4.提交测试5.交付上线项目流程仿造博客园项目 核心:文章的增删改查表分析 先确定表的数量再确定表的基础字段......
  • Java【双色球案例】
    题目:1.投注是从红色球号码中选择6个号码(不能重复),从蓝色球号码中选择1个号码,组合为一注投注号码的投注2.红色球号码为[1-33],蓝色球号码为[1-16]3.开奖号码和购彩者号码......
  • 【数学建模入门】层次分析法
    层次分析法适用场景主要用于解决评价类问题(例如:选择哪种方案最好、哪位运动员或者员工表现最好)基本知识例题:假如有三个地方分别是苏杭、北戴河、桂林,我们现在要运用层......
  • Win10在线升级Win11
    下载微软官方在线升级工具,直接一键在线升级https://www.microsoft.com/zh-cn/software-download/windows11/  右键菜单一键恢复win10风格,管理员运行以下命令:1、......
  • Python模块之dedent 删除字符串中的前导空格
    作用:删除字符串中的前导空格必要操作:>>>fromtextwrapimportdedent 帮助查看:>>>help(dedent)方法(函数):fromtextwrapimportdedenttext="""......