新冠肺炎现在情况怎么样了?推荐Github标星24.7K+的新冠肺炎公开数据集,利用这个数据集,可以用代码进行简单地可视化及预测。
推荐新冠肺炎的公开数据集:
https://github.com/CSSEGISandData/COVID-19
数据可视化:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
数据集能做什么?
这个数据集可以做以下分析:
- 全球趋势
- 国家(地区)增长
- 省份情况
- 美国
- 欧洲
- 亚洲
- 什么时候会收敛?进行预测
简单演示
新冠肺炎感染人数可视化效果
数据来源
数据来源:
- World Health Organization (WHO): https://www.who.int/
- DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.
- BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/
- National Health Commission of the People’s Republic of China (NHC):
http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml - China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm
- Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html
- Macau Government: https://www.ssm.gov.mo/portal/
- Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0
- US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html
- Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html
- Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance
- European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases
- Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19
- Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus
- 1Point3Arces: https://coronavirus.1point3acres.com/en
- WorldoMeters: https://www.worldometers.info/coronavirus/
- COVID Tracking Project: https://covidtracking.com/data. (US Testing and Hospitalization Data. We use the maximum reported value from "Currently" and "Cumulative" Hospitalized for our hospitalization number reported for each state.)
- French Government: https://dashboard.covid19.data.gouv.fr/
- COVID Live (Australia): https://www.covidlive.com.au/
- Washington State Department of Health: https://www.doh.wa.gov/emergencies/coronavirus
- Maryland Department of Health: https://coronavirus.maryland.gov/
- New York State Department of Health: https://health.data.ny.gov/Health/New-York-State-Statewide-COVID-19-Testing/xdss-u53e/data
- NYC Department of Health and Mental Hygiene: https://www1.nyc.gov/site/doh/covid/covid-19-data.page and https://github.com/nychealth/coronavirus-data
- Florida Department of Health Dashboard: https://services1.arcgis.com/CY1LXxl9zlJeBuRZ/arcgis/rest/services/Florida_COVID19_Cases/FeatureServer/0 and https://fdoh.maps.arcgis.com/apps/opsdashboard/index.html#/8d0de33f260d444c852a615dc7837c86
总结
本文推荐新冠肺炎的公开数据集,利用这个数据集,可以用代码进行简单地可视化及预测。
数据集地址:
https://github.com/CSSEGISandData/COVID-19
数据预测代码:
https://www.kaggle.com/corochann/covid-19-current-situation-on-october?scriptVersionId=45297457