首页 > 其他分享 >[BJOI2019]勘破神机

[BJOI2019]勘破神机

时间:2022-12-22 21:57:55浏览次数:78  
标签:BJOI2019 神机 return LL beta Complex sum 勘破 mod

题目描述

定义\(f_n\)为用\(1\times 2\)骨牌填满\(2\times n\)网格的方案数,\(g_n\)为填满\(3\times n\)网格的方案数。

求:

\[\frac{1}{r-l+1}\sum_{i=l}^rC_{f_i}^k/\frac{1}{r-l+1}\sum_{i=l}^rC_{g_i}^k\texttt{mod 998244353} \]

\[l\leq r\leq 10^{18},k\leq 500 \]

解题思路

\[C_{f_i}^k=\frac{f_i^{\underline k}}{k!} \]

\[f_n^{\underline k}=\sum_{i=0}^k(-1)^{k-i}S_k^if_n^i \]

其中 \(S_n^k\)代表第一类斯特林数。

\[\begin{aligned} \sum_{i=0}^nC_{f_i}^k&=\frac{1}{k!}\sum_{i=0}^n\sum_{j=0}^k(-1)^{k-j}S_k^jf_i^j\\ &=\frac{1}{k!}\sum_{j=0}^k(-1)^{k-j}S_k^j\sum_{i=0}^nf_i^j\\ \end{aligned} \]

问题变为求解 \(\sum_{i=0}^nf_i^j\)

众所周知 \(f_n\) 是斐波那契第\(n+1\)项。

斐波那契通项公式:

\[f_n=\frac{1}{\sqrt 5}((\frac{1+\sqrt 5}{2})^{n+1}-(\frac{1-\sqrt 5}{2})^{n+1}) \]

可以化为\(f_n=A\alpha^{n+1}+B\beta^{n+1}\)

带入原式并展开:

\[\begin{aligned} \sum_{i=0}^n(A\alpha^{i+1}+B\beta^{i+1})^k&=\sum_{i=0}^n\sum_{j=0}^kC_k^j(A\alpha^{i+1})^j(B\beta^{i+1})^{k-j}\\ &=\sum_{i=0}^n\sum_{j=0}^kC_k^jA^j\alpha^{(i+1)j}B^{k-j}\beta^{(i+1)(k-j)}\\ &=\sum_{i=0}^n\sum_{j=0}^kC_k^jA^jB^{k-j}(\alpha^j\beta^{k-j})^{i+1}\\ &=\sum_{j=0}^kC_k^jA^jB^{k-j}\sum_{i=0}^n(\alpha^j\beta^{k-j})^{i+1} \end{aligned} \]

前面枚举后直接算,后边是等比数列求和可以\(O(1)\)算,需要特判公比为\(1\)的情况。

因为\(\sqrt 5\)不存在\(\texttt{mod 998244353}\)下的二次剩余,因此需要扩域,即把数字表示成\(a+b\sqrt 5\)的形式,类似复数的运算。

\(g_n\)也可以找出通项公式然后表示成和\(f_n\)相同的形式,可以类似算。

复杂度\(O(Tk^2\log n)\)

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int mod = 998244353;
inline LL Pow(LL a,LL b)
{
	a%=mod;
	LL res=1;
	while(b)
	{
		if(b&1)res=res*a%mod;
		a=a*a%mod;
		b>>=1;
	}
	return res;
}
LL D;
struct Complex
{
	LL a,b;
	Complex(){a=b=0;}
	Complex(LL x,LL y){a=(x%mod+mod)%mod;b=(y%mod+mod)%mod;}
	Complex operator +(Complex x){return Complex(a+x.a,b+x.b);}
	Complex operator -(Complex x){return Complex(a-x.a,b-x.b);}
	Complex operator *(Complex x){return Complex(a*x.a+b*x.b%mod*D,a*x.b+b*x.a);}
};
Complex operator *(LL k,Complex x){return Complex(k*x.a,k*x.b);}
Complex inv(Complex x)
{
	LL P=(x.a*x.a%mod-x.b*x.b%mod*D%mod+mod)%mod;
	P=Pow(P,mod-2);
	return Complex(x.a*P%mod,mod-x.b*P%mod);
}
Complex Pow(Complex a,LL b)
{
	Complex res=Complex(1,0);
	a=Complex(a.a,a.b);
	while(b)
	{
		if(b&1)res=res*a;
		a=a*a;
		b>>=1;
	}
	return res;
}
const int N = 520;
LL S[N][N],C[N][N]; 
LL I2=Pow(2,mod-2),I6=Pow(6,mod-2);
int m;
Complex alpha,beta,A,B;
LL L,R,k;
LL pw(LL x){return (x&1)?mod-1:1;}
LL calc(LL n,LL k)
{
	LL coef=1;
	for(int i=1;i<=k;i++)coef=1ll*coef*i%mod;
	coef=Pow(coef,mod-2);
	Complex One=Complex(1,0),Zero=Complex(0,0);
	LL ans=0;
	for(int i=0;i<=k;i++)
	{
		LL P=1ll*S[k][i]*pw(k-i)%mod;
		Complex res=Zero;
		for(int j=0;j<=i;j++)
		{
			Complex u=Pow(alpha,i-j)*Pow(beta,j);
			Complex v=Pow(u,n+1);
			if(u.a==1&&u.b==0) v.a=(n+1)%mod,v.b=0;
			else u=inv(One-u),v=(One-v)*u;
			v=v*Pow(A,i-j)*Pow(B,j);
			v=C[i][j]*v;
			res=res+v;
		}
		ans=(ans+1ll*P*res.a%mod)%mod;
	}
	
	return 1ll*ans*coef%mod;
}
void solve()
{
	scanf("%lld %lld %lld",&L,&R,&k);
	LL coef=Pow(R-L+1,mod-2);
	if(m==2)R++;
	else L=(L-1)/2,R/=2;
	LL res=(calc(R,k)-calc(L,k)+mod)%mod*coef%mod;
	printf("%lld\n",res);
}
void put(Complex x)
{
	cout<<x.a<<' '<<x.b<<endl;
}
int main()
{
	C[0][0]=1;S[0][0]=1;
	for(int i=1;i<N;i++)
	{
		C[i][0]=1;
		for(int j=1;j<=i;j++)
		{
			C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
			S[i][j]=(S[i-1][j-1]+1ll*(i-1)*S[i-1][j]%mod)%mod;
		}
	}
	int T;
	cin>>T>>m;
	if(m==2)
	{
		D=5;
		alpha=Complex(I2,I2);
		beta=Complex(I2,-I2);
		A=Complex(1,0)*inv(Complex(0,1));
		B=Complex(0,0)-A;
	}
	if(m==3)
	{
		D=3;
		alpha=Complex(2,-1);
		beta=Complex(2,1);
		A=Complex(I2,-I6);
		B=Complex(I2,I6);
	}
	while(T--)
	{
		solve();
	}
	return 0;
}

标签:BJOI2019,神机,return,LL,beta,Complex,sum,勘破,mod
From: https://www.cnblogs.com/jesoyizexry/p/16999654.html

相关文章