首页 > 其他分享 >多尺度的图像细节提升multiScaleSharpen实现方法

多尺度的图像细节提升multiScaleSharpen实现方法

时间:2022-12-22 12:36:03浏览次数:67  
标签:Src Mat img int 尺度 uchar multiScaleSharpen 图像 ptr

图像增强:多尺度的图像细节提升(multi-scale detail boosting)实现方法

 

 

 

#include <iostream>    
#include <opencv2\opencv.hpp>    
#include <opencv2\highgui\highgui.hpp>    
using namespace std;
using namespace cv;
 
cv::Mat multiScaleSharpen(cv::Mat Src, int Radius)
{
    int rows = Src.rows;
    int cols = Src.cols;
    int cha = Src.channels();
    cv::Mat B1, B2, B3;
    GaussianBlur(Src, B1, Size(Radius, Radius), 1.0, 1.0);//高斯模糊
    GaussianBlur(Src, B2, Size(Radius*2-1, Radius*2-1), 2.0, 2.0);
    GaussianBlur(Src, B3, Size(Radius*4-1, Radius*4-1), 4.0, 4.0);
 
    double w1 = 0.5;
    double w2 = 0.5;
    double w3 = 0.25;
 
    cv::Mat dest = cv::Mat::zeros(Src.size(), Src.type());
    for (size_t i = 0; i < rows; i++)
    {
        uchar* src_ptr = Src.ptr<uchar>(i);
        uchar* dest_ptr = dest.ptr<uchar>(i);
        uchar* B1_ptr = B1.ptr<uchar>(i);
        uchar* B2_ptr = B2.ptr<uchar>(i);
        uchar* B3_ptr = B3.ptr<uchar>(i);
        for (size_t j = 0; j < cols; j++)
        {
            for (size_t c = 0; c < cha; c++)
            {
                int  D1 = src_ptr[3*j+c] - B1_ptr[3 * j + c];
                int  D2 = B1_ptr[3 * j + c] - B2_ptr[3 * j + c];
                int  D3 = B2_ptr[3 * j + c] - B3_ptr[3 * j + c];
                int  sign = (D1 > 0) ? 1 : -1;
                dest_ptr[3 * j + c] = saturate_cast<uchar>((1 - w1*sign)*D1 - w2*D2 + w3*D3 + src_ptr[3 * j + c]);
            }
        }
    }
    return dest;
}
 
int main(int argc)
{
    Mat src = imread("image\\test.jpg");
    cv::imshow("src", src);
    cvWaitKey(100);
 
    cv::Mat dest=multiScaleSharpen(src,5);
    cv::imshow("dest", dest);
 
    cvWaitKey(0);
    return 0;
}

 

  作为一种简单可行的方法,是有效果的。并入GOCvHelper库中,并且向OpenCV进行推送。

 

 

  为了进行pr的资料准备,需要做以下研究: 1、算法原理,比较能够将清楚的地方;(OK继续) 2、此类代码放在哪里比较合适,并且确保编译正确; 3、完善文档,提炼价值。   该算法来自论文 DARK IMAGE ENHANCEMENT BASED ON PAIRWISE TARGET CONTRAST AND MULTI-SCALE DETAIL BOOSTING https://ieeexplore.ieee.org/abstract/document/7351031/ 的第2.3节

论文的核心思想类似于Retinex,使用了三个尺度的高斯模糊,再和原图做减法,获得不同程度的细节信息,然后通过一定的组合方式把这些细节信息融合到原图中,从而得到加强原图信息的能力。值得一提的就是对D1的系数做了特殊的处理,算法的编码简单、效果明显。

对应的python实现

 

# -*- coding: utf-8 -*-

import cv2
import numpy as np
from numpy import uint8
from numpy import float32
from numpy import hstack

def multiScaleSharpen(img ,radius):

    h,w,chan = img.shape
    GaussBlue1 = np.zeros(img.shape,dtype = uint8)
    GaussBlue2 = np.zeros(img.shape, dtype=uint8)
    GaussBlue3 = np.zeros(img.shape, dtype=uint8)
    Dest_float_img = np.zeros(img.shape, dtype=float32)
    Dest_img = np.zeros(img.shape, dtype=uint8)

    w1 = 0.5
    w2 = 0.5
    w3 = 0.25

    GaussBlue1 = cv2.GaussianBlur(img,(radius,radius),1)
    GaussBlue2 = cv2.GaussianBlur(img,(radius*2-1,radius*2-1),2)
    GaussBlue3 = cv2.GaussianBlur(img,(radius*4-1,radius*4-1),4)

    for i in range(0,h):
        for j in range(0,w):
            for k in range(0,chan):
                Src = img.item(i,j,k)
                D1 = Src-GaussBlue1.item(i,j,k)
                D2 = GaussBlue1.item(i,j,k) - GaussBlue2.item(i,j,k)
                D3 = GaussBlue2.item(i,j,k) - GaussBlue3.item(i,j,k)
                if(D1 > 0):
                    sig = 1
                else:
                    sig = -1
                Dest_float_img.itemset((i,j,k),(1-w1*sig)*D1+w2*D2+w3*D3+Src)

    Dest_img = cv2.convertScaleAbs(Dest_float_img)
    return Dest_img

if __name__ == '__main__':
    img = cv2.imread("175_result.bmp")
    #img = cv2.imread("128.jpg")
    multiScaleSharpen_out = np.zeros(img.shape, dtype=uint8)
    multiScaleSharpen_out = multiScaleSharpen(img,5)#jishu
    cv2.imwrite("multiScaleSharpen_175_result.bmp", multiScaleSharpen_out)

OpenCV自己是否有Shappen的东西?值得研究。

#include "opencv2/core/utility.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include <stdio.h>
using namespace cv;
using namespace std;
int sharpenRadius = 1;
Mat image, sharpen;
const char* window_name1 = "multiScaleSharpen";
Mat multiScaleSharpen(Mat Src, int Radius)
{
    int rows = Src.rows;
    int cols = Src.cols;
    int cha = Src.channels();
    Mat B1, B2, B3;
    GaussianBlur(Src, B1, Size(Radius, Radius), 1.0, 1.0);
    GaussianBlur(Src, B2, Size(Radius * 2 - 1, Radius * 2 - 1), 2.0, 2.0);
    GaussianBlur(Src, B3, Size(Radius * 4 - 1, Radius * 4 - 1), 4.0, 4.0);
    double w1 = 0.5;
    double w2 = 0.5;
    double w3 = 0.25;
    cv::Mat dest = cv::Mat::zeros(Src.size(), Src.type());
    for (size_t i = 0; i < rows; i++)
    {
        uchar* src_ptr = Src.ptr<uchar>(i);
        uchar* dest_ptr = dest.ptr<uchar>(i);
        uchar* B1_ptr = B1.ptr<uchar>(i);
        uchar* B2_ptr = B2.ptr<uchar>(i);
        uchar* B3_ptr = B3.ptr<uchar>(i);
        for (size_t j = 0; j < cols; j++)
        {
            for (size_t c = 0; c < cha; c++)
            {
                int  D1 = src_ptr[3 * j + c] - B1_ptr[3 * j + c];
                int  D2 = B1_ptr[3 * j + c] - B2_ptr[3 * j + c];
                int  D3 = B2_ptr[3 * j + c] - B3_ptr[3 * j + c];
                int  sign = (D1 > 0) ? 1 : -1;
                dest_ptr[3 * j + c] = saturate_cast<uchar>((1 - w1 * sign)*D1 - w2 * D2 + w3 * D3 + src_ptr[3 * j + c]);
            }
        }
    }
    return dest;
}
// define a trackbar callback
static void onTrackbar(int, void*)
{
    sharpen = multiScaleSharpen(image, sharpenRadius *2+1);
    imshow(window_name1, sharpen);
}
static void help(const char** argv)
{
    printf("\nThis sample demonstrates multiScaleSharpen detection\n"
           "Call:\n"
           "    %s [image_name -- Default is lena.jpg]\n\n", argv[0]);
}
const char* keys =
{
    "{help h||}{@image |lena.jpg|input image name}"
};
int main( int argc, const char** argv )
{
    help(argv);
    CommandLineParser parser(argc, argv, keys);
    string filename = parser.get<string>(0);
    image = imread(samples::findFile(filename), IMREAD_COLOR);
    if(image.empty())
    {
        printf("Cannot read image file: %s\n", filename.c_str());
        help(argv);
        return -1;
    }
    // Create a window
    namedWindow(window_name1, 1);
    // create a toolbar
    createTrackbar("Canny threshold default", window_name1, &sharpenRadius, 7, onTrackbar);
    // Show the image
    onTrackbar(0, 0);
    // Wait for a key stroke; the same function arranges events processing
    waitKey(0);
    return 0;}
https://github.com/opencv/opencv/blob/master/samples/cpp/tutorial_code/core/mat_mask_operations/mat_mask_operations.cpp 给提供了:
void Sharpen(const Mat& myImage,Mat& Result)
{
  //! [8_bit]
    CV_Assert(myImage.depth() == CV_8U);  // accept only uchar images
  //! [8_bit]

  //! [create_channels]
    const int nChannels = myImage.channels();
    Result.create(myImage.size(),myImage.type());
  //! [create_channels]

  //! [basic_method_loop]
    for(int j = 1 ; j < myImage.rows-1; ++j)
    {
        const uchar* previous = myImage.ptr<uchar>(j - 1);
        const uchar* current  = myImage.ptr<uchar>(j    );
        const uchar* next     = myImage.ptr<uchar>(j + 1);

        uchar* output = Result.ptr<uchar>(j);

        for(int i= nChannels;i < nChannels*(myImage.cols-1); ++i)
        {
            *output++ = saturate_cast<uchar>(5*current[i]
                         -current[i-nChannels] - current[i+nChannels] - previous[i] - next[i]);
        }
    }
  //! [basic_method_loop]

  //! [borders]
    Result.row(0).setTo(Scalar(0));
    Result.row(Result.rows-1).setTo(Scalar(0));
    Result.col(0).setTo(Scalar(0));
    Result.col(Result.cols-1).setTo(Scalar(0));
  //! [borders]
}

 

标签:Src,Mat,img,int,尺度,uchar,multiScaleSharpen,图像,ptr
From: https://www.cnblogs.com/jsxyhelu/p/16998265.html

相关文章

  • 气泡的图像增强
    气泡的图像增强对于这样的图片,如果只是基于普通的阈值处理、或者是梯度增强,都会因为背景比较复杂,从而结果不是很理想。很久之前,我的考虑就是要基于图像的本质特征。......
  • 图像处理的云实验
    一直以来,我都在思考,如何将图像处理和手机等移动终端结合起来。结合起来的方法,大体应该说是两类,一类就是直接在android手机上写native的程序,但是由于工具链的搭建比较复杂,再......
  • 论文复现丨基于ModelArts进行图像风格化绘画
    摘要:这个notebook基于论文「StylizedNeuralPainting,arXiv:2011.08114.」提供了最基本的「图片生成绘画」变换的可复现例子。本文分享自华为云社区《基于ModelArts进......
  • 论文复现丨基于ModelArts进行图像风格化绘画
    摘要:这个notebook基于论文「StylizedNeuralPainting,arXiv:2011.08114.」提供了最基本的「图片生成绘画」变换的可复现例子。本文分享自华为云社区《​​基于ModelArts......
  • 用一个图像分类实例拿捏Pytorch使用方法
    写在最前边这篇文章要写的内容看封面,就是要用一篇文章讲解一下,怎么用Fashion-MNIST数据集,我们自己建一个神经网络,训练好之后用它做图片分类。importtorchfromtorchim......
  • GOCVHelper图像处理算法库
      GOCVHelper(GreenOpenComputerVersionHelper)是我在这几年编写图像处理程序的过程中积累下来的函数库。主要是对Opencv的适当扩展和在实现Mfc程序时候的功能增......
  • 图像分割与GPU利用率
    图像分割与GPU利用率参考文献链接https://mp.weixin.qq.com/s/rdTGk-K_0K81mDrdvtdz4Qhttps://mp.weixin.qq.com/s/Vdh15tkqn4nlaf63m9dMXATMI-2022|标签高效式的细......
  • 仿照“全能扫描王”的图像增强-由原理到实现
    一、算法目标:实现这种背景去除增强的效果,特别是在“全能扫描王”中该算法得到了典型的应用。  二、使用PS进行模拟图像处理算法很多时候就是对成熟经验的模拟和......
  • go-Typora-Sqoosh-图像压缩-Github-图床
    go-Typora-Sqoosh-图像压缩-Github-图床SquooshGoogleChromeLabs/squoosh:Makeimagessmallerusingbest-in-classcodecs,rightinthebrowser.(github.com)htt......
  • 提速3.7倍!何恺明团队再发新作,更快更高效的FLIP模型:通过Masking扩展语言-图像预训练(附
    原创/文BFT机器人研究论文地址:https://arxiv.org/abs/2212.00794计算机视觉和深度学习领域大神何恺明携团队再发新作!论文围绕近来火热的CLIP(ContrastiveLanguage-Image......