There is a bi-directional graph with n
vertices, where each vertex is labeled from 0
to n - 1
(inclusive). The edges in the graph are represented as a 2D integer array edges
, where each edges[i] = [ui, vi]
denotes a bi-directional edge between vertex ui
and vertex vi
. Every vertex pair is connected by at most one edge, and no vertex has an edge to itself.
You want to determine if there is a valid path that exists from vertex source
to vertex destination
.
Given edges
and the integers n
, source
, and destination
, return true
if there is a valid path from source
to destination
, or false
otherwise.
Example 1:
Input: n = 3, edges = [[0,1],[1,2],[2,0]], source = 0, destination = 2 Output: true Explanation: There are two paths from vertex 0 to vertex 2: - 0 → 1 → 2 - 0 → 2
Example 2:
Input: n = 6, edges = [[0,1],[0,2],[3,5],[5,4],[4,3]], source = 0, destination = 5 Output: false Explanation: There is no path from vertex 0 to vertex 5.
Constraints:
1 <= n <= 2 * 105
0 <= edges.length <= 2 * 105
edges[i].length == 2
0 <= ui, vi <= n - 1
ui != vi
0 <= source, destination <= n - 1
- There are no duplicate edges.
- There are no self edges.
寻找图中是否存在路径。
有一个具有 n 个顶点的 双向 图,其中每个顶点标记从 0 到 n - 1(包含 0 和 n - 1)。图中的边用一个二维整数数组 edges 表示,其中 edges[i] = [ui, vi] 表示顶点 ui 和顶点 vi 之间的双向边。 每个顶点对由 最多一条 边连接,并且没有顶点存在与自身相连的边。
请你确定是否存在从顶点 source 开始,到顶点 destination 结束的 有效路径 。
给你数组 edges 和整数 n、source 和 destination,如果从 source 到 destination 存在 有效路径 ,则返回 true,否则返回 false 。
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/find-if-path-exists-in-graph
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
这是一道图论的题目,这里我给出三种思路,分别是BFS,DFS 和 并查集。题意很好理解,给了一些定点,其中包含 source 和 destination,请问 source 和 destination 是否连通。
BFS - 需要额外的 boolean 数组记录每个 node 是否被访问过,避免死循环
时间O(n)
空间O(n)
Java实现
1 class Solution { 2 public boolean validPath(int n, int[][] edges, int source, int destination) { 3 List<List<Integer>> g = new ArrayList<>(); 4 for (int i = 0; i < n; i++) { 5 g.add(new ArrayList<>()); 6 } 7 8 for (int[] e : edges) { 9 g.get(e[0]).add(e[1]); 10 g.get(e[1]).add(e[0]); 11 } 12 13 boolean[] visited = new boolean[n]; 14 Queue<Integer> queue = new LinkedList<>(); 15 queue.offer(source); 16 while (!queue.isEmpty()) { 17 int cur = queue.poll(); 18 if (cur == destination) { 19 return true; 20 } 21 visited[cur] = true; 22 int size = g.get(cur).size(); 23 for (int i = 0; i < size; i++) { 24 int next = g.get(cur).get(i); 25 if (visited[next] == false) { 26 queue.offer(next); 27 } 28 } 29 } 30 return false; 31 } 32 }
DFS - 也需要额外的 boolean 数组记录每个 node 是否被访问过,避免死循环
时间O(n)
空间O(n)
Java实现
1 class Solution { 2 private boolean[] visited; 3 private List<List<Integer>> g; 4 5 public boolean validPath(int n, int[][] edges, int source, int destination) { 6 visited = new boolean[n]; 7 g = new ArrayList<>(); 8 for (int i = 0; i < n; i++) { 9 g.add(new ArrayList<>()); 10 } 11 for (int[] e : edges) { 12 g.get(e[0]).add(e[1]); 13 g.get(e[1]).add(e[0]); 14 } 15 return dfs(source, destination); 16 } 17 18 private boolean dfs(int source, int destination) { 19 if (source == destination) { 20 return true; 21 } 22 visited[source] = true; 23 for (int next : g.get(source)) { 24 if (!visited[next] && dfs(next, destination)) { 25 return true; 26 } 27 } 28 return false; 29 } 30 }
Union Find - P 数组记录的是每个 node 的父节点,最后判断 source 和 destination 的父节点是否相同
时间O(V + E)
空间O(V + E)
Java实现
1 class Solution { 2 private int[] p; 3 4 public boolean validPath(int n, int[][] edges, int source, int destination) { 5 p = new int[n]; 6 for (int i = 0; i < n; i++) { 7 p[i] = i; 8 } 9 for (int[] e : edges) { 10 p[find(e[0])] = find(e[1]); 11 } 12 return find(source) == find(destination); 13 } 14 15 private int find(int x) { 16 if (p[x] != x) { 17 p[x] = find(p[x]); 18 } 19 return p[x]; 20 } 21 }
标签:Exists,int,Graph,destination,vertex,1971,source,edges,boolean From: https://www.cnblogs.com/cnoodle/p/16992052.html