首页 > 其他分享 >ABC266.

ABC266.

时间:2022-08-29 20:56:20浏览次数:63  
标签:wedge le 于是 dfrac tt ABC266 节点

D

设 \(f_{t,p}\) 代表在 \(t\) 时间点时人在 \(p\) 点的最大收益,在这一步他可以 \(p\) 增加,不动,\(p\) 减少。于是得出状态转移方程:\(f_{t,p} = \max(f_{t-1,p-1}, f_{t-1,p}, f_{t-1,p+1}) + a_{t,p}\)。

E

设 \(f_i\) 是第 \(i\) 轮的最大收益,策略一定是当骰子点数 \(\geq x\) 时就停止(\(x\) 是枚举的),则有 \(\dfrac{x-1}{6}\) 的概率重摇,而停止的期望是 \(\dfrac{x+(x+1)+\cdots+6}{6}=\dfrac{(6-x)(7+x)/2}{6}\),所以有 \(f_i=\dfrac{(x-1)f_{i+1}+(6-x)(7+x)/2}{6}\)。

F

构成一个环套树,搜出那个环,将所有节点是环上哪个节点的子树搜出来,然后判断两个节点的根是否相等。
image

在本图中,先把所有节点返到环上,于是有两条路径,输出 No
image
在本图中,返到换上后必须绕一圈才能有第二条路径,而绕一圈就不是 simple path 了,于是输出 Yes

G

令 \({\tt RG}={\tt X}\),则问题转化为 \(R-K\) 个 \({\tt R}\),\(G-K\) 个 \({\tt G}\),\(B\) 个 \({\tt B}\),\(K\) 个 \({\tt X}\),要求 \({\tt RG}\) 不能相邻,于是插板法可以解决问题。

H

通过 dp 得到 \(f_{i,x,y}=\max\{f_{i',x',y'} : y' \le y \wedge |x - x'| + y - y' \le t - t'\}\)。
有一个讨厌的绝对值,考虑消掉他。
\( \begin{array}{l} |x - x'| + y - y' \le t - t' \\ |x - x'| \le (t - t') - (y - y') \\ \{|x - x'|, -|x - x'|\} = \{x, -x\} \\ -|x - x'| \le 0 \le (t - t') - (y - y') & (y - y') \le 0, (t - t') \ge (t - t') - (y - y') \ge 0 \\ |x - x'| \le k \\ |x - x'| \le k \wedge -|x - x'| \le k \\ (x - x') \le k \wedge -(x - x') \le k \end{array} \)
于是有 \((x-x')+(y-y') \le (t-t') \wedge (x'-x) + (y-y') \le (t-t')\),于是移项得 \((t'-x'-y') \le (t-x-y) \wedge (t'+x'-y') \le (t+x+y)\),再加上 \(y' \le y\),就是春春的三位偏序,就可以 \(\rm cdq\) 解决。

标签:wedge,le,于是,dfrac,tt,ABC266,节点
From: https://www.cnblogs.com/lhx-oier/p/16637331.html

相关文章

  • ABC266 做题笔记
    AProblem给定一个字符串,输出正中间那个字符。link->https://atcoder.jp/contests/abc266/tasks/abc266_a。Solution简单题。Code点击查看代码#include<bits/stdc+......
  • [Atcoder]ABC266题解
    C-ConvexQuadrilateral计算几何给定平面内四个点,要求判断它们组成的四边形是否是凸四边形法一:凸四边形的两条对角线将其分成两个三角形分成的两个三角形面积相加......
  • ABC266总结
    比赛情况AC:6/8排名:830题目分析A(语法)直接输出\(s_{n/2+1}\)即可点击查看代码//Problem:A-MiddleLetter//Contest:AtCoder-AtCoderBeginnerContest......