首页 > 其他分享 >KingabseES例程-事实数据与规则的匹配校验

KingabseES例程-事实数据与规则的匹配校验

时间:2022-12-13 15:36:16浏览次数:45  
标签:KingabseES rows .. 例程 rul04 校验 width cost null

KingabseES例程-事实数据与规则的匹配校验

背景

使用规则,对数据进行校验,比如电商的用户购物订单,是否合法。这就需要订单的多维度,如 用户、地区、物流、支付手段、供应商 等各类信息,进行动态组合条件的关联匹配。

通常的匹配模式

针对某个订单

一种是根据某个订单,与全部规则进行匹配。

select a.*
from rul04_val a,
     rul04 b
where 1 = 1
  and (a.c1 = b.c1 or b.c1 is null)
  and (a.c2 = b.c2 or b.c2 is null)
  and (a.c3 = b.c3 or b.c3 is null)
  and (a.c4 = b.c4 or b.c4 is null)
  and a.id = 1000;
  
Nested Loop  (cost=0.43..151.15 rows=12 width=26)
  Join Filter: (((a.c1 = b.c1) OR (b.c1 IS NULL)) AND ((a.c2 = b.c2) OR (b.c2 IS NULL)) AND ((a.c3 = b.c3) OR (b.c3 IS NULL)) AND ((a.c4 = b.c4) OR (b.c4 IS NULL)))
  ->  Index Scan using rul04_val_pkey on rul04_val a  (cost=0.43..8.45 rows=1 width=26)
        Index Cond: (id = 1000)
  ->  Seq Scan on rul04 b  (cost=0.00..62.90 rows=3990 width=16)

针对某个规则

一种是,根据某个规则,校验所有订单,

select a.*
from rul04_val a,
     rul04 b
where 1 = 1
  and (a.c1 = b.c1 or b.c1 is null)
  and (a.c2 = b.c2 or b.c2 is null)
  and (a.c3 = b.c3 or b.c3 is null)
  and (a.c4 = b.c4 or b.c4 is null)
  and b.id = 1000;
  
Nested Loop  (cost=0.28..374083.30 rows=30134 width=26)
  Join Filter: (((a.c1 = b.c1) OR (b.c1 IS NULL)) AND ((a.c2 = b.c2) OR (b.c2 IS NULL)) AND ((a.c3 = b.c3) OR (b.c3 IS NULL)) AND ((a.c4 = b.c4) OR (b.c4 IS NULL)))
  ->  Index Scan using rul04_pkey on rul04 b  (cost=0.28..8.30 rows=1 width=16)
        Index Cond: (id = 1000)
  ->  Seq Scan on rul04_val a  (cost=0.00..174075.00 rows=10000000 width=26)

全部订单和全部规则

如果需要对全部或大量的订单和规则,进行匹配运算,这将是海量的计算。

select a.*
from rul04_val a,
     rul04 b
where 1 = 1
  and (a.c1 = b.c1 or b.c1 is null)
  and (a.c2 = b.c2 or b.c2 is null)
  and (a.c3 = b.c3 or b.c3 is null)
  and (a.c4 = b.c4 or b.c4 is null) ;
  

                                                                                 QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 Gather  (cost=1000.00..368873734.60 rows=120236596 width=46) (actual time=5.172..879507.928 rows=386411 loops=1)
   Workers Planned: 4
   Workers Launched: 4
   ->  Nested Loop  (cost=0.00..356849075.00 rows=30059149 width=46) (actual time=12.698..879456.332 rows=77282 loops=5)
         Join Filter: (((a.c1 = b.c1) OR (b.c1 IS NULL)) AND ((a.c2 = b.c2) OR (b.c2 IS NULL)) AND ((a.c3 = b.c3) OR (b.c3 IS NULL)) AND ((a.c4 = b.c4) OR (b.c4 IS NULL)))
         Rows Removed by Join Filter: 7979922718
         ->  Parallel Seq Scan on rul04_val a  (cost=0.00..99075.00 rows=2500000 width=26) (actual time=0.018..151.852 rows=2000000 loops=5)
         ->  Seq Scan on rul04 b  (cost=0.00..62.90 rows=3990 width=20) (actual time=0.001..0.162 rows=3990 loops=10000000)
 Planning Time: 0.289 ms
 Execution Time: 879521.346 ms

分解匹配规则

普通模式的查询,不能使用事实表的索引。这是因为关联条件中,AND运算包含OR运算,这就使得关联运算是volatile属性,这里需要进行SQL调优。

此处的SQL,是多列存在匹配需求,或者不需匹配的全集。这里可以利用对bit数据的类比,将匹配和全集的表达式,理解成1与0,反之亦可。从而得知,需要分解成2^4=16个,不含OR运算的查询,然后将16个查询结果合并。

--16个查询,组合。每个查询,都能使用较适合的索引。
select *
from rul04_val a, rul04 b
where b.c1 is null and b.c2 is null and b.c3 is null and b.c4 is null
union all
select *
from rul04_val a, rul04 b
where b.c1 is null and b.c2 is null and b.c3 is null and a.c4 = b.c4
union all
...
union all
from rul04_val a, rul04 b
where a.c1 = b.c1 and a.c2 = b.c2 and a.c3 = b.c3 and a.c4 = b.c4
;

Append  (cost=5.24..458866.31 rows=10410804 width=26) (actual time=0.432..1059.117 rows=386411 loops=1)
  ->  Result  (cost=5.24..174080.24 rows=10000000 width=26) (actual time=0.233..0.234 rows=0 loops=1)
        One-Time Filter: $0
        InitPlan 1 (returns $0)
          ->  Seq Scan on rul04 b_15  (cost=0.00..62.90 rows=12 width=0) (actual time=0.230..0.230 rows=0 loops=1)
                Filter: ((c1 IS NULL) AND (c2 IS NULL) AND (c3 IS NULL) AND (c4 IS NULL))
                Rows Removed by Filter: 3990
        ->  Seq Scan on rul04_val a  (cost=5.24..174080.24 rows=10000000 width=26) (never executed)
...
  ->  Nested Loop  (cost=112.08..5417.64 rows=1 width=26) (actual time=9.831..9.832 rows=0 loops=1)
        ->  HashAggregate  (cost=102.80..106.79 rows=399 width=16) (actual time=0.896..1.413 rows=3990 loops=1)
              Group Key: b_14.c1, b_14.c2, b_14.c3, b_14.c4
              ->  Seq Scan on rul04 b_14  (cost=0.00..62.90 rows=3990 width=16) (actual time=0.005..0.158 rows=3990 loops=1)
        ->  Bitmap Heap Scan on rul04_val a_15  (cost=9.28..13.30 rows=1 width=26) (actual time=0.002..0.002 rows=0 loops=3990)
              Recheck Cond: ((c3 = b_14.c3) AND (c4 = b_14.c4) AND (c1 = b_14.c1) AND (c2 = b_14.c2))
              ->  BitmapAnd  (cost=9.28..9.28 rows=1 width=0) (actual time=0.002..0.002 rows=0 loops=3990)
                    ->  Bitmap Index Scan on idx_rul04_val_c34  (cost=0.00..4.51 rows=10 width=0) (actual time=0.001..0.001 rows=5 loops=3990)
                          Index Cond: ((c3 = b_14.c3) AND (c4 = b_14.c4))
                    ->  Bitmap Index Scan on idx_rul04_val_c12  (cost=0.00..4.51 rows=10 width=0) (actual time=0.001..0.001 rows=4 loops=2240)
                          Index Cond: ((c1 = b_14.c1) AND (c2 = b_14.c2))
Planning Time: 1.763 ms
Execution Time: 1068.627 ms

由于需要关联的列数是不确定,而且优化后的查询语句,是大量的局部查询语句组合而成,这给开发人员带来巨大的工作量。我们需要一种,通用语句解决这个复杂且不确定的需求。

数据准备

规则表与事实表关联的列,建议列名相同,或使用相同的别名。

规则表

--规则表(4个条件列)
--插入多种(2^4)组合的条件数据
drop table rul04;
create table rul04
(
    id int primary key,
    c1 int,
    c2 int,
    c3 int,
    c4 int
);
--基于条件列,创建单列索引,这些索引未必使用。
create index idx_rul04_c1 on rul04 (c1);
create index idx_rul04_c2 on rul04 (c2);
create index idx_rul04_c3 on rul04 (c3);
create index idx_rul04_c4 on rul04 (c4);

insert into rul04
select row_number() over (), c1, c2, c3, c4
from (
         select null c1, null c2, null c3, null c4
         from generate_series(1, 1000) id
         union
         select null, null, null, (random() * 9)::int
         from generate_series(1, 1000)
         union
         select null, null, (random() * 9)::int, null
         from generate_series(1, 1000)
         union
         select null, (random() * 9)::int, null, null
         from generate_series(1, 1000)
         union
         select (random() * 9)::int, null, null, null
         from generate_series(1, 1000)
         union
         select null, (random() * 9)::int, null, (random() * 9)::int
         from generate_series(1, 1000)
         union
         select null, (random() * 9)::int, (random() * 9)::int, null
         from generate_series(1, 1000)
         union
         select null, null, (random() * 9)::int, (random() * 9)::int
         from generate_series(1, 1000)
         union
         select (random() * 9)::int, null, null, (random() * 9)::int
         from generate_series(1, 1000)
         union
         select (random() * 9)::int, null, (random() * 9)::int, null
         from generate_series(1, 1000)
         union
         select (random() * 9)::int, (random() * 9)::int, null, null
         from generate_series(1, 1000)
         union
         select (random() * 9)::int, null, (random() * 9)::int, (random() * 9)::int
         from generate_series(1, 1000)
         union
         select null, (random() * 9)::int, (random() * 9)::int, (random() * 9)::int
         from generate_series(1, 1000)
         union
         select (random() * 9)::int, (random() * 9)::int, null, (random() * 9)::int
         from generate_series(1, 1000)
         union
         select (random() * 9)::int, (random() * 9)::int, (random() * 9)::int, null
         from generate_series(1, 1000)
         union
         select (random() * 9)::int, (random() * 9)::int, (random() * 9)::int, (random() * 9)::int
         from generate_series(1, 1000)
     ) t
;

事实表

--事实表(4个条件列)
create table rul04_val
(
    id  int,
    c1  int,
    c2  int,
    c3  int,
    c4  int,
    val numeric
);

insert into rul04_val
select id,
       (random() * 999)::int,
       (random() * 999)::int,
       (random() * 999)::int,
       (random() * 999)::int,
       round(random() * 10000, 2)
from generate_series(1, 10000000) id;


alter table rul04_val
    add primary key (id);

--单维度列的索引
create index idx_rul04_val_c1 on rul04_val (c1);
create index idx_rul04_val_c2 on rul04_val (c2);
create index idx_rul04_val_c3 on rul04_val (c3);
create index idx_rul04_val_c4 on rul04_val (c4);

--按规则表的数据分布规律,创建2个及以上列的复合索引
create index idx_rul04_val_c12 on rul04_val (c1,c2); 
create index idx_rul04_val_c13 on rul04_val (c3,c4); 

并行执行动态查询

根据条件的组合关系,动态生成全部16个查询语句,使用dblink的异步查询函数,并行执行这些查询语句,最后结果组合。

创建多个dblink连接

建议数据的socket连接,允许免密。

create extension dblink ;

select connam,
       dblink_connect(connam,
                      format('host=%s port=%s dbname=%s user=%s ',
                             current_setting('unix_socket_directories', true),
                             current_setting('port', true),
                             current_database(),
                             current_user))::text as reault
from (select 'dblink_' || id as connam
      from generate_series(1000, 1000 - 1 + 100) id) t;
      

事实表与规则表的全量匹配运算

事实表名、规则表名、条件维度列,已经并行度,都可以自定义。

如果并行执行,用时最长的查询,决定整体执行时长。

在CTE中,会话连接(conn)记录数,决定并行度。

为了语句的通用性,可以使用主键列或唯一列,代替CTID列。

--dattab: 事实表名; rultab: 规则表名; colname: 关联的条件维度列名 
with val as (select 'rul04_val' dattab, 'rul04' rultab, ('{c1,c2,c3,c4}'::text[]) colname),
     sta as
         (select id,
                 format('select a.ctid atid,b.ctid btid from %I a , %I b where %s ', dattab, rultab, whr) sqlsta
          from val,
               lateral array_length(colname, 1) colnum,
               generate_series(0, 2 ^ (array_length(colname, 1)) - 1) id,
              lateral ( select string_agg(case
                                              when get_bit(id::bit(10), sn + 9 - colnum) = 1
                                                  then format('a.%1$I=b.%1$I', colname[sn])
                                              else format('b.%1$I is null', colname[sn]) end, ' and ') whr
                        from generate_series(1, colnum) sn)),
     conn as  
         (select connam,
                 row_number() over () sn
          from unnest(dblink_get_connections()) connam
          where dblink_is_busy(connam) = 0
          limit 4),
     qursta as
         (select connam, string_agg(sqlsta, ' union all ') as qursta
          from conn,
               sta,
               (select count(*) connum from conn) t
          where conn.sn = sta.id % connum + 1
          group by connam),
     sedqur as
         (select array_agg(connam) connams
          from qursta
             , lateral dblink_send_query(connam, qursta) sq),
     res as (
         select res.*
         from sedqur
            , lateral unnest(connams) connam
            , lateral dblink_get_result(connam) as res(atid tid, btid tid))
select a.*,b.*
from res
         join rul04_val a on a.ctid = atid
         join rul04 b on b.ctid = btid;
;

Hash Join  (cost=343.84..40906.33 rows=10000 width=46) (actual time=144.807..1444.010 rows=386411 loops=1)
  Hash Cond: (res.btid = b.ctid)
  CTE conn
    ->  Limit  (cost=0.01..0.17 rows=1 width=40) (actual time=0.046..0.173 rows=20 loops=1)
          ->  WindowAgg  (cost=0.01..0.17 rows=1 width=40) (actual time=0.046..0.171 rows=20 loops=1)
                ->  Function Scan on unnest connam  (cost=0.01..0.15 rows=1 width=32) (actual time=0.042..0.162 rows=20 loops=1)
                      Filter: (dblink_is_busy(connam) = 0)
                      Rows Removed by Filter: 2
  CTE sedqur
    ->  Aggregate  (cost=30.66..30.67 rows=1 width=32) (actual time=0.447..0.454 rows=1 loops=1)
          ->  Nested Loop  (cost=30.60..30.65 rows=1 width=32) (actual time=0.308..0.447 rows=16 loops=1)
                ->  GroupAggregate  (cost=30.59..30.62 rows=1 width=64) (actual time=0.296..0.318 rows=16 loops=1)
                      Group Key: conn.connam
                      ->  Sort  (cost=30.59..30.60 rows=1 width=64) (actual time=0.293..0.298 rows=16 loops=1)
                            Sort Key: conn.connam
                            Sort Method: quicksort  Memory: 27kB
                            ->  Nested Loop  (cost=30.06..30.58 rows=1 width=64) (actual time=0.220..0.276 rows=16 loops=1)
                                  ->  Function Scan on colnum  (cost=0.00..0.01 rows=1 width=4) (actual time=0.002..0.003 rows=1 loops=1)
                                  ->  Nested Loop  (cost=30.06..30.56 rows=1 width=64) (actual time=0.216..0.268 rows=16 loops=1)
                                        ->  Hash Join  (cost=0.06..0.53 rows=1 width=36) (actual time=0.202..0.211 rows=16 loops=1)
                                              Hash Cond: ((((id.id)::bigint % (count(*))) + 1) = conn.sn)
                                              ->  Nested Loop  (cost=0.02..0.36 rows=16 width=12) (actual time=0.011..0.015 rows=16 loops=1)
                                                    ->  Aggregate  (cost=0.02..0.03 rows=1 width=8) (actual time=0.006..0.007 rows=1 loops=1)
                                                          ->  CTE Scan on conn conn_1  (cost=0.00..0.02 rows=1 width=0) (actual time=0.000..0.002 rows=20 loops=1)
                                                    ->  Function Scan on generate_series id  (cost=0.00..0.16 rows=16 width=4) (actual time=0.004..0.005 rows=16 loops=1)
                                              ->  Hash  (cost=0.02..0.02 rows=1 width=40) (actual time=0.186..0.186 rows=20 loops=1)
                                                    Buckets: 1024  Batches: 1  Memory Usage: 10kB
                                                    ->  CTE Scan on conn  (cost=0.00..0.02 rows=1 width=40) (actual time=0.047..0.179 rows=20 loops=1)
                                        ->  Aggregate  (cost=30.00..30.02 rows=1 width=32) (actual time=0.003..0.003 rows=1 loops=16)
                                              ->  Function Scan on generate_series sn  (cost=0.00..10.00 rows=1000 width=4) (actual time=0.000..0.000 rows=4 loops=16)
                ->  Function Scan on dblink_send_query sq  (cost=0.00..0.01 rows=1 width=0) (actual time=0.008..0.008 rows=1 loops=16)
  CTE res
    ->  Nested Loop  (cost=0.01..200.22 rows=10000 width=12) (actual time=143.473..973.506 rows=386411 loops=1)
          ->  Nested Loop  (cost=0.00..0.22 rows=10 width=32) (actual time=0.455..0.470 rows=16 loops=1)
                ->  CTE Scan on sedqur  (cost=0.00..0.02 rows=1 width=32) (actual time=0.449..0.449 rows=1 loops=1)
                ->  Function Scan on unnest connam_1  (cost=0.00..0.10 rows=10 width=32) (actual time=0.005..0.012 rows=16 loops=1)
          ->  Function Scan on dblink_get_result res_1  (cost=0.00..10.00 rows=1000 width=12) (actual time=57.747..59.090 rows=24151 loops=16)
  ->  Nested Loop  (cost=0.00..40425.00 rows=10000 width=32) (actual time=143.488..1377.323 rows=386411 loops=1)
        ->  CTE Scan on res  (cost=0.00..200.00 rows=10000 width=12) (actual time=143.475..1029.676 rows=386411 loops=1)
        ->  Tid Scan on rul04_val a  (cost=0.00..4.01 rows=1 width=32) (actual time=0.001..0.001 rows=1 loops=386411)
              TID Cond: (ctid = res.atid)
  ->  Hash  (cost=62.90..62.90 rows=3990 width=26) (actual time=1.308..1.308 rows=3990 loops=1)
        Buckets: 4096  Batches: 1  Memory Usage: 244kB
        ->  Seq Scan on rul04 b  (cost=0.00..62.90 rows=3990 width=26) (actual time=0.007..0.565 rows=3990 loops=1)
Planning Time: 0.479 ms
Execution Time: 1456.717 ms

断开所有连接

select *
from unnest(dblink_get_connections()) connam 
   , lateral dblink_disconnect(connam);

总结

优化后的查询语句,仰赖事实表的多列索引,与规则数据的适配程度。由于分解重组后的查询语句较多,需要在索引与查询语句之间,进行取舍平衡。

标签:KingabseES,rows,..,例程,rul04,校验,width,cost,null
From: https://www.cnblogs.com/yuzhijian/p/16978949.html

相关文章