首页 > 其他分享 >Pandas基本操作

Pandas基本操作

时间:2022-08-15 10:45:27浏览次数:58  
标签:02 index 索引 2015 基本操作 data Pandas axis

Pandas介绍

  • 2008年WesMcKinney开发出的库
  • 专门用于数据挖掘的开源python库
  • 以Numpy为基础,借力Numpy模块在计算方面性能高的优势
  • 基于matplotlib,能够简便的画图
  • 独特的数据结构

为什么使用Pandas,Numpy已经能够帮助我们处理数据,能够结合matplotlib解决部分数据展示等问题,那么pandas学习的目的在什么地方呢?

  • 便捷的数据处理能力
  • 读取文件方便
  • 封装了Matplotlib、Numpy的画图和计算

DataFrame结构

  DataFrame对象既有行索引,又有列索引

  • 行索引,表明不同行,横向索引,叫index
  • 列索引,表名不同列,纵向索引,叫columns

DataFrame的属性

常用属性:

  shape

data.shape
# 结果
(10, 5)

  index

DataFrame的行索引列表
data.index

Index(['股票0', '股票1', '股票2', '股票3', '股票4', '股票5', '股票6', '股票7', '股票8', '股票9'], dtype='object')

  columns

DataFrame的列索引列表

data.columns

DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04', '2017-01-05',
               '2017-01-06'],
              dtype='datetime64[ns]', freq='B')

  values

直接获取其中array的值

data.values

array([[-0.06544031, -1.30931491, -1.45451514,  0.57973008,  1.48602405],
       [-1.73216741, -0.83413717,  0.45861517, -0.80391793, -0.46878575],
       [ 0.21805567,  0.19901371,  0.7134683 ,  0.5484263 ,  0.38623412],
       [-0.42207879, -0.33702398,  0.42328531, -1.23079202,  1.32843773],
       [-1.72530711,  0.07591832, -1.91708358, -0.16535818,  1.07645091],
       [-0.81576845, -0.28675278,  1.20441981,  0.73365951, -0.06214496],
       [-0.98820861, -1.01815231, -0.95417342, -0.81538991,  0.50268175],
       [-0.10034128,  0.61196204, -0.06850331,  0.74738433,  0.143011  ],
       [ 1.00026175,  0.34241958, -2.2529711 ,  0.93921064,  1.14080312],
       [ 2.52064693,  1.55384756,  1.72252984,  0.61270132,  0.60888092]])

  T

转置

data.T

常用方法:

  • head(5):显示前5行内容

如果不补充参数,默认5行。填入参数N则显示前N行

data.head(5)
  • tail(5):显示后5行内容

如果不补充参数,默认5行。填入参数N则显示后N行

data.tail(5)

 

DataFrame索引的设置

  • 修改行列索引值
stock_code = ["股票_" + str(i) for i in range(stock_change.shape[0])]

# 必须整体全部修改
data.index = stock_code

# 不能单独修改一个
  • 重设索引
    • reset_index(drop=False)
      • 设置新的下标索引
      • drop:默认为False,不删除原来索引,如果为True,删除原来的索引值
# 重置索引,drop=False
data.reset_index()
  • 以某列值设置为新的索引
    • set_index(keysdrop=True)
      • keys : 列索引名成或者列索引名称的列表
      • drop : boolean, default True.当做新的索引,删除原来的列
df = pd.DataFrame({'month': [1, 4, 7, 10],
                    'year': [2012, 2014, 2013, 2014],
                    'sale':[55, 40, 84, 31]})

   month  sale  year
0  1      55    2012
1  4      40    2014
2  7      84    2013
3  10     31    2014

# 以月份设置新的索引
df.set_index('month')
       sale  year
month
1      55    2012
4      40    2014
7      84    2013
10     31    2014

# 设置多个索引,以年和月份
df.set_index(['year', 'month'])
            sale
year  month
2012  1     55
2014  4     40
2013  7     84
2014  10    31

 

MultiIndex与Panel

打印刚才的df的行索引结果

df.index

MultiIndex(levels=[[2012, 2013, 2014], [1, 4, 7, 10]],
           labels=[[0, 2, 1, 2], [0, 1, 2, 3]],
           names=['year', 'month'])

MultiIndex

多级或分层索引对象。

  • index属性
    • names:levels的名称
    • levels:每个level的元组值
df.index.names
FrozenList(['year', 'month'])

df.index.levels
FrozenList([[2012, 2013, 2014], [1, 4, 7, 10]])

Panel

  • classpandas.Panel(data=Noneitems=Nonemajor_axis=Noneminor_axis=Nonecopy=Falsedtype=None)
    • 存储3维数组的Panel结构
p = pd.Panel(np.arange(24).reshape(4,3,2),
                 items=list('ABCD'),
                 major_axis=pd.date_range('20130101', periods=3),
                 minor_axis=['first', 'second'])
p

<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: A to D
Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
Minor_axis axis: first to second

items - axis 0,每个项目对应于内部包含的数据帧(DataFrame)。
major_axis - axis 1,它是每个数据帧(DataFrame)的索引(行)。
minor_axis - axis 2,它是每个数据帧(DataFrame)的列。

 

 

Series

  • series结构只有行索引
data = data.T
# series
type(data['股票_0'])
pandas.core.series.Series

# 这一步相当于是series去获取行索引的值
data['股票_0']['2017-01-02']
-0.18753158283513574

 

创建Series

通过已有数据创建

  • 指定内容,默认索引
  • pd.Series(np.arange(10))
  • 指定索引
  • pd.Series([6.7, 5.6, 3, 10, 2], index=[1, 2, 3, 4, 5])

    通过字典数据创建

     
    pd.Series({'red':100, 'blue':200, 'green': 500, 'yellow':1000})

Series获取索引和值

  • index
  • values

 

读取文件

# 读取文件
data = pd.read_csv("./stock_day/stock_day.csv")

# 删除一些列,让数据更简单些,再去做后面的操作
data = data.drop(["ma5","ma10","ma20","v_ma5","v_ma10","v_ma20"], axis=1)

 

 

索引操作

  Numpy当中我们已经讲过使用索引选取序列和切片选择,pandas也支持类似的操作,也可以直接使用列名、行名

称,甚至组合使用。

  

直接使用行列索引(先列后行),获取'2018-02-27'这天的'close'的结果

# 直接使用行列索引名字的方式(先列后行)
data['open']['2018-02-27']
23.53

# 不支持的操作
# 错误
data['2018-02-27']['open']
# 错误
data[:1, :2]

结合loc或者iloc使用索引

获取从'2018-02-27':'2018-02-22','open'的结果

# 使用loc:只能指定行列索引的名字
data.loc['2018-02-27':'2018-02-22', 'open']

2018-02-27    23.53
2018-02-26    22.80
2018-02-23    22.88
Name: open, dtype: float64

# 使用iloc可以通过索引的下标去获取
# 获取前100天数据的'open'列的结果
data.iloc[0:100, 0:2].head()

            open    high    close    low
2018-02-27    23.53    25.88    24.16    23.53
2018-02-26    22.80    23.78    23.53    22.80
2018-02-23    22.88    23.37    22.82    22.71

使用ix组合索引

获取行第1天到第4天,['open', 'close', 'high', 'low']这个四个指标的结果

# 使用ix进行下表和名称组合做引
data.ix[0:4, ['open', 'close', 'high', 'low']]

# 推荐使用loc和iloc来获取的方式
data.loc[data.index[0:4], ['open', 'close', 'high', 'low']]
data.iloc[0:4, data.columns.get_indexer(['open', 'close', 'high', 'low'])]

            open    close    high    low
2018-02-27    23.53    24.16    25.88    23.53
2018-02-26    22.80    23.53    23.78    22.80
2018-02-23    22.88    22.82    23.37    22.71
2018-02-22    22.25    22.28    22.76    22.02

赋值操作

对DataFrame当中的close列进行重新赋值为1

# 直接修改原来的值
data['close'] = 1
# 或者
data.close = 1

排序

排序有两种形式,一种对内容进行排序,一种对索引进行排序

DataFrame

  • 使用df.sort_values(key=, ascending=)对内容进行排序
    • 单个键或者多个键进行排序,默认升序
    • ascending=False:降序
    • ascending=True:升序
# 按照涨跌幅大小进行排序 , 使用ascending指定按照大小排序
data = data.sort_values(by='p_change', ascending=False).head()

            open    high    close    low        volume price_change p_change turnover
2015-08-28    15.40    16.46    16.46    15.00    117827.60    1.50    10.03    4.03
2015-05-21    27.50    28.22    28.22    26.50    121190.11    2.57    10.02    4.15
2016-12-22    18.50    20.42    20.42    18.45    150470.83    1.86    10.02    3.77
2015-08-04    16.20    17.35    17.35    15.80    94292.63    1.58    10.02    3.23
2016-07-07    18.66    18.66    18.66    18.41    48756.55    1.70    10.02    1.67

# 按照多个键进行排序
data = data.sort_values(by=['open', 'high'])
            open    high    close    low        volume price_change p_change turnover
2015-06-15    34.99    34.99    31.69    31.69    199369.53    -3.52    -10.00    6.82
2015-06-12    34.69    35.98    35.21    34.01    159825.88    0.82    2.38    5.47
2015-06-10    34.10    36.35    33.85    32.23    269033.12    0.51    1.53    9.21
2017-11-01    33.85    34.34    33.83    33.10    232325.30    -0.61    -1.77    5.81
2015-06-11    33.17    34.98    34.39    32.51    173075.73    0.54    1.59    5.92
  • 使用df.sort_index对索引进行排序
这个股票的日期索引原来是从大到小,现在重新排序,从小到大

# 对索引进行排序
data.sort_index()

            open    high    close    low    volume    price_change    p_change    turnover
2015-03-02    12.25    12.67    12.52    12.20    96291.73    0.32    2.62    3.30
2015-03-03    12.52    13.06    12.70    12.52    139071.61    0.18    1.44    4.76
2015-03-04    12.80    12.92    12.90    12.61    67075.44    0.20    1.57    2.30
2015-03-05    12.88    13.45    13.16    12.87    93180.39    0.26    2.02    3.19
2015-03-06    13.17    14.48    14.28    13.13    179831.72    1.12    8.51    6.16

Series

  • 使用series.sort_values(ascending=True)对内容进行排序
series排序时,只有一列,不需要参数

data['p_change'].sort_values(ascending=True).head()

2015-09-01   -10.03
2015-09-14   -10.02
2016-01-11   -10.02
2015-07-15   -10.02
2015-08-26   -10.01
Name: p_change, dtype: float64
  • 使用series.sort_index()对索引进行排序
与df一致

# 对索引进行排序
data['p_change'].sort_index().head()

2015-03-02    2.62
2015-03-03    1.44
2015-03-04    1.57
2015-03-05    2.02
2015-03-06    8.51
Name: p_change, dtype: float64

DataFrame运算

 

标签:02,index,索引,2015,基本操作,data,Pandas,axis
From: https://www.cnblogs.com/hanzeng1993/p/16587309.html

相关文章

  • Numpy基本操作
     Numpy介绍Numpy(NumericalPython)是一个开源的Python科学计算库,用于快速处理任意维度的数组。Numpy支持常见的数组和矩阵操作。对于同样的数值计算任务,使用Nump......
  • centOS7 firewall 防火墙基本操作
    centOS7firewall防火墙基本操作运维家 2022-07-2309:09 发表于北京收录于合集#防火墙1个#linux22个 一、防火墙的开启、关闭、禁用命令 (1)设置开机......
  • 抽取基本JDBC中的基本操作与数据连接池
     1.JDBCDBC(JavaDataBaseConnectivity):Java数据库连接技术:具体讲就是通过Java连接广泛的数据库,并对表中数据执行增、删、改、查等操作的技术。JDBC是数据库与Java代......
  • HCIA-Datacom 1.1实验 华为VRP系统基本操作
    前言:最近有很多老哥,会私信问我一些华为的网络配置和规划,在调试的时候我发现其实我命令也忘了很多,所以写一个文档,方便大家查阅实验介绍:  实现功能:1.完成设备重命名,路......