首页 > 其他分享 >LeNet,AlexNet,VGG,GoogLeNet

LeNet,AlexNet,VGG,GoogLeNet

时间:2022-12-09 22:34:11浏览次数:46  
标签:输出 前层 卷积 VGG GoogLeNet 解读 特征 16 AlexNet

卷积神经网络-LeNet

  理解channel:卷积操作完成后输出的 out_channels ,取决于卷积核的数量。此时的 out_channels 也会作为下一次卷积时的卷积核的 in_channels

  C1 层功能解读:卷积核(filter)实际上就是小的特征模版(5×5 feature window),卷积的作用就是用 特征模版在全图(input image)逐点计算每个点及其邻域 与该模版的符合度

  S2 层功能解读:S2 层将 C1 层的 6 个特征图分别缩小 1 倍,在尺寸缩小的前提下,要保留 C1 层特 征图中的显著特征,这种保留分两个方面解读:位置、输出

  C3 层功能解读:这一层将前层的 6 个特征按 16 种方式组合成 16 个组合卷积核(combined filters), 用这种卷积核对前层的 6 个特征图,做卷积、加截距(偏差)、通过激活函数,获得 16 个新的特征 图,每个特征图对应一个组合卷积核所表达的组合特征

  S4 层功能解读:S4 层将 C3 层的 16 个特征图分别缩小 1 倍,在尺寸缩小的前提下,要保留 C3 层 特征图中的显著特征。

  C5 层功能解读:这一层将前层的 16 个特征按全参加的方式组合成 120 个组合卷积核(combined filters),用这种卷积核对前层的 16 个特征图,做卷积、加截距、通过激活函数,获得 120 个新的 特征图(实际上只是一个特征值),每个特征值对应一个组合卷积核所表达的全图组合特征

  F6 层功能解读:这一层将前层的 120 个神经元输出值按全连接方式得到本层的 84 个单元

  F7 层功能解读:这一层将前层的 84 个神经元输出值按全连接方式得到本层的 10 个单元

代价函数:而网络学习的目的就是要通过修改网络权值,从而 降低这个代价值,使得网络输出尽量靠近对应的标签

Gradient Descent :

  神经网络训练的目的就是选择合适的 θ使得代价函数取得极小

Cross Entropy Loss Function

  是与Softmax网络相匹配的代价函数

  基于信息熵的解释:

  

NiN块

  一个卷积层后跟两个全连接层

  步幅为1, 无填充, 输出形状跟卷积层输出一样

  起到全连接层的作用

  架构:

    无全连接层

    交替使用NiN块和步幅为2的最大池 化层,逐步减少高度和最大通道数

    最后使用全局平均池化层得到输出,其输入通道数是类别数

 

 

 

  

标签:输出,前层,卷积,VGG,GoogLeNet,解读,特征,16,AlexNet
From: https://www.cnblogs.com/dwletsgo/p/16968270.html

相关文章