首页 > 其他分享 >RestClient查询文档

RestClient查询文档

时间:2022-12-08 23:22:32浏览次数:49  
标签:高亮 RestClient request 查询 source 文档 解析 response

 

文档的查询同样适用昨天学习的 RestHighLevelClient对象,基本步骤包括:

  • 1)准备Request对象

  • 2)准备请求参数

  • 3)发起请求

  • 4)解析响应

1.快速入门

我们以match_all查询为例

1.1.发起查询请求

代码解读:

  • 第一步,创建SearchRequest对象,指定索引库名

  • 第二步,利用request.source()构建DSL,DSL中可以包含查询、分页、排序、高亮等

    • query():代表查询条件,利用QueryBuilders.matchAllQuery()构建一个match_all查询的DSL

  • 第三步,利用client.search()发送请求,得到响应

 这里关键的API有两个,一个是request.source(),其中包含了查询、排序、分页、高亮等所有功能:

 

 

 另一个是QueryBuilders,其中包含match、term、function_score、bool等各种查询:

1.2.解析响应

响应结果的解析:

 

elasticsearch返回的结果是一个JSON字符串,结构包含:

  • hits:命中的结果

    • total:总条数,其中的value是具体的总条数值

    • max_score:所有结果中得分最高的文档的相关性算分

    • hits:搜索结果的文档数组,其中的每个文档都是一个json对象

      • _source:文档中的原始数据,也是json对象

因此,我们解析响应结果,就是逐层解析JSON字符串,流程如下:

  • SearchHits:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果

    • SearchHits#getTotalHits().value:获取总条数信息

    • SearchHits#getHits():获取SearchHit数组,也就是文档数组

      • SearchHit#getSourceAsString():获取文档结果中的_source,也就是原始的json文档数据

1.3.完整代码

完整代码如下:

@Test
void testMatchAll() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
        .query(QueryBuilders.matchAllQuery());
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);

    // 4.解析响应
    handleResponse(response);
}

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

1.4.小结

查询的基本步骤是:

  1. 创建SearchRequest对象

  2. 准备Request.source(),也就是DSL。

    ① QueryBuilders来构建查询条件

    ② 传入Request.source() 的 query() 方法

  3. 发送请求,得到结果

  4. 解析结果(参考JSON结果,从外到内,逐层解析)

2.match查询

全文检索的match和multi_match查询与match_all的API基本一致。差别是查询条件,也就是query的部分。

 

 因此,Java代码上的差异主要是request.source().query()中的参数了。同样是利用QueryBuilders提供的方法:

 

而结果解析代码则完全一致,可以抽取并共享。

完整代码如下:

@Test
void testMatch() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
        .query(QueryBuilders.matchQuery("all", "如家"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

3.精确查询

精确查询主要是两者:

  • term:词条精确匹配

  • range:范围查询

与之前的查询相比,差异同样在查询条件,其它都一样。

查询条件构造的API如下:

4.布尔查询

布尔查询是用must、must_not、filter等方式组合其它查询,代码示例如下:

 

可以看到,API与其它查询的差别同样是在查询条件的构建,QueryBuilders,结果解析等其他代码完全不变。

完整代码如下:

@Test
void testBool() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.准备BooleanQuery
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    // 2.2.添加term
    boolQuery.must(QueryBuilders.termQuery("city", "杭州"));
    // 2.3.添加range
    boolQuery.filter(QueryBuilders.rangeQuery("price").lte(250));

    request.source().query(boolQuery);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

5.排序、分页

搜索结果的排序和分页是与query同级的参数,因此同样是使用request.source()来设置。

对应的API如下:

完整代码示例:

@Test
void testPageAndSort() throws IOException {
    // 页码,每页大小
    int page = 1, size = 5;

    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchAllQuery());
    // 2.2.排序 sort
    request.source().sort("price", SortOrder.ASC);
    // 2.3.分页 from、size
    request.source().from((page - 1) * size).size(5);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

6.高亮

高亮的代码与之前代码差异较大,有两点:

  • 查询的DSL:其中除了查询条件,还需要添加高亮条件,同样是与query同级。

  • 结果解析:结果除了要解析_source文档数据,还要解析高亮结果

6.1.高亮请求构建

高亮请求的构建API如下:

上述代码省略了查询条件部分,但是大家不要忘了:高亮查询必须使用全文检索查询,并且要有搜索关键字,将来才可以对关键字高亮。

完整代码如下:

@Test
void testHighlight() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchQuery("all", "如家"));
    // 2.2.高亮
    request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

6.2.高亮结果解析

高亮的结果与查询的文档结果默认是分离的,并不在一起。

因此解析高亮的代码需要额外处理:

 

代码解读:

  • 第一步:从结果中获取source。hit.getSourceAsString(),这部分是非高亮结果,json字符串。还需要反序列为HotelDoc对象

  • 第二步:获取高亮结果。hit.getHighlightFields(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值

  • 第三步:从map中根据高亮字段名称,获取高亮字段值对象HighlightField

  • 第四步:从HighlightField中获取Fragments,并且转为字符串。这部分就是真正的高亮字符串了

  • 第五步:用高亮的结果替换HotelDoc中的非高亮结果

完整代码如下:

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        // 获取高亮结果
        Map<String, HighlightField> highlightFields = hit.getHighlightFields();
        if (!CollectionUtils.isEmpty(highlightFields)) {
            // 根据字段名获取高亮结果
            HighlightField highlightField = highlightFields.get("name");
            if (highlightField != null) {
                // 获取高亮值
                String name = highlightField.getFragments()[0].string();
                // 覆盖非高亮结果
                hotelDoc.setName(name);
            }
        }
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

 

标签:高亮,RestClient,request,查询,source,文档,解析,response
From: https://www.cnblogs.com/kisshappyboy/p/16967721.html

相关文章

  • 秒级查询之开源分布式SQL查询引擎Presto实操-上
    @目录概述定义概念架构优缺点连接器部署集群安装常用配置说明资源管理安装模式安装命令行界面基于TableauWeb连接器使用优化数据存储查询SQL优化无缝替换Hive表建表格式......
  • Java操作ElasticSearch(三、查询)
    查询的步骤如下创建SearchSourceBuilder对象添加查询条件QueryBuilders添加排序、分页等其他条件创建SearchRequest对象,并指定索引库名称发起请求,得到结果获取......
  • 快速学会慢查询SQL排查
    转载请注明出处❤️作者:测试蔡坨坨原文链接:caituotuo.top/c56bd0c5.html你好,我是测试蔡坨坨。在往期文章中,我们聊过数据库基础知识,可参考「数据库基础,看完这篇就够了!」......
  • Laravel 查询包括软删除的记录
    本文为joshua317原创文章,转载请注明:转载自joshua317博客 https://www.joshua317.com/article/287###1.查询结果包括已被软删除的记录:Model::withTrashed()->get();#......
  • ARM linunx文档
    ​​PortingtoARM64-bit​​​​ARMv8_white_paper​​​​ARMv8_Architecture​​​​Introducingthe64-bitARMv8Architecture​​(http://andrew.wafaa.eu/files/Eu......
  • BKPF会计凭证查询-ALV表
    *&---------------------------------------------------------------------**&ReportZ14*&*&-----------------------------------------------------------------......
  • SQLSERVER日期查询(年、月、日、季、周、时、分、秒)
     常用日期查询操作SELECTGETDATE()[当前日期],DATENAME(YEAR,GETDATE())[年],DATENAME(MONTH,GETDATE())[月],DATENAME(DAY,GETD......
  • MybatisPlus实现高效的多对多查询
    1、前置事先声明一下代码中蕴含了大量的Stream和Lambda表达式操作,还不清楚的小伙伴可以去参考一下Java8新特性Stream流,而却我是用的是MybatisPlus这方面不清楚的也可以参......
  • 完全参考java8的开发文档写的文件读写
    publicstaticvoidmain(String[]args)throwsIOException{Stringpath="D:\\project\\luotuo-server\\src\\test\\java\\com\\manageSystem\\project......
  • swagger 接口文档转 pdf
    步骤1、先把swagger导出swagger.json文件2、windows目录挂载注意下,比如windows目录D:\swagger得写成/D/swagger,swagger.json文件放在D:\swagger目录下,执行......