首页 > 其他分享 >图

时间:2022-12-06 10:24:37浏览次数:29  
标签: 遍历 int 访问 邻接 节点 isVisited

  • 阅读本文的一些约定:
    1. 顶点==节点
    2. 当前节点==该节点
  • 何为邻接矩阵:表示顶点之间相邻关系的矩阵

  • 何为权值:是路由器通过路径选择算法为网络上的路径产生的一个数字。

  • 规范:

变量名 数学意思
vertex(节点) 节点代表顶点
edges 邻接矩阵

1.0创建图及其常用方法

  • 思路

    1. 存储顶点用ArrayList集合;存储邻接矩阵用int[] [] edges
    2. 添加边
      • 说明:根据顶点的下标进行添加到邻接矩阵
    3. 插入顶点(节点)
    4. 其他图常用方法
      • 返回节点的个数
      • 返回边的数目
      • 返回节点i对应的数据(i为下标,前面已经说过我们只是根据顶点下标添加边)
      • 返回两个顶点的权值

    核心代码

    private ArrayList<String> vertexList;//存储顶点集合
    private int[][] edges;//存储图对应的邻接矩阵
    private int numOfEdges;//表示边的数目
    private boolean[] isVisited;//记录某个节点是否被访问到
    
    public Graph(int n) { //n为节点个数
            //初始化矩阵 和 vertexList
            edges = new int[n][n];
            vertexList = new ArrayList<>(n);
            numOfEdges =0;
        }
    
    //插入节点
    public void insertVertex(String vertex){
        vertexList.add(vertex);
    }
    
    
    /**
     * 添加边
     * @param v1 表示点的下标,即第几个顶点
     * @param v2 第二个顶点对应的下标
     * @param weight 表示权值
     */
    public void insertEdge(int v1,int v2,int weight){
        edges[v1][v2] = weight;
        edges[v2][v1] = weight;//对称矩阵
        numOfEdges++;//边加一
    }
    

2.0深度优先遍历

  • 规律:递归实现遍历,一个图中一个节点可能有多个邻接节点,当访问第一个节点后,将该节点设为已被访问,然后访问该节点的第一个邻接节点;如果该邻接节点未被访问,则将该邻接节点设未当前节点,并且该邻接节点设为已访问,然后继续以当前节点继续访问当前节点的邻接节点,依此类推,直到所有节点都被访问后,递归回去,结束程序。

  • 思路步骤:

    1. 首先访问初始节点 v,并立刻标记节点v为已访问。
    2. 接着查找节点v的第一个邻接节点w。
    3. 如果w存在,则继续执行4,如果w不存在,则回到第一步,从v的下一个节点继续扫描执行以上步骤
    4. 如果w存在却未被访问,对w进行深度优先遍历递归(也就是把w当作另一个v,然后从头执行以上步骤)。
    5. 查找节点v的w邻接节点的下一个邻接节点,转到步骤3

    核心代码

    //重载dfs
    public void dfs(){
        isVisited = new boolean[vertexList.size()];
        for (int i = 0;i<getNumOfVertex();i++){
            if (!isVisited[i]){
                dfs(isVisited,i);
            }
        }
    }
    
    /**
     * 深度优先遍历算法
     *
     * @param isVisited 是否被访问
     * @param i         第一次为 0
     */
    private void dfs(boolean[] isVisited, int i) {
        //访问==输出
        System.out.print(getValueByIndex(i)+"=>");
        //设为被访问
        isVisited[i] = true;
        //查找节点i的第一个邻接节点w
        int w = getFirstNeighbor(i);
        //如果w未被访问,则将w设为当前节点,继续充当i的角色
        //因为获取邻接节点方法有可能返回一个-1,则需要循环语句
        while (w!=-1){
            if (!isVisited[w]){
                dfs(isVisited,w);
            }
            //步骤5,根据当前节点v的下标,获取当前节点v的w的邻接节点的下标,并更新旧w,即充当w
            w = getNextNeighbor(i,w);
        }
    
    }
    

3.0广度优先遍历

  • 思路
    1. 访问初始节点 v 并标记节点v为已访问
    2. 节点v入队列
    3. 当队列为空时,结束;否则继续
    4. 出队列,取得队头节点 u
    5. 查找节点u的第一个邻接节点 w
    6. 若节点u的邻接节点w不存在,则转到第三步;否则循环执行以下步骤:
      • 若节点w还未被访问,则访问w并标记已访问
      • 节点w入队列
      • 查找节点u的继w后的,u的其他邻接节点,转到第六步
  • 核心代码
//广度遍历所有节点
public void bfs(){
    isVisited = new boolean[vertexList.size()];
    for (int i = 0; i < vertexList.size(); i++) {
        if (!isVisited[i]){
            bfs(isVisited,i);
        }
    }
}
//一个队头节点:进行广度优先遍历算法
public void bfs(boolean[] isVisited,int i){
    int u;//表示队列的头节点对应的下标
    int w;//邻接节点
    //队列,记录节点访问的顺序?
    LinkedList<Integer> queue= new LinkedList<>();

    ///访问节点
    System.out.print(getValueByIndex(i) + "=>");
    //标记已访问
    isVisited[i] = true;
    //将节点加入队列
    queue.addLast(i);
    while (!queue.isEmpty()){
        //取出队列的头节点下标
        u = queue.removeFirst();
        //得到第一个邻接节点的下标
        w = getFirstNeighbor(u);
        //
        while (w!=-1){
            if (!isVisited[w]){
                //如果w还未被访问
                System.out.print(getValueByIndex(w)+"=>");
                //标记已经访问
                isVisited[w]=true;
                //入队
                queue.addLast(w);
            }
            //以u为前驱节点,找到w后面的下一个邻接点
            w = getNextNeighbor(u,w);
        }
    }
}

区别与总结

深度优先:先根遍历;

广度优先:层次遍历;

总结:

  1. 图是多对多关系,一个顶点有多个邻接节点,深度遍历和广度遍历都是先访问初始节点后,以该节点继续访问该节点的第一个邻接节点;后面步骤不同:
    • 深度遍历是标记了一个节点后,以该节点作为中心,继续遍历该节点的第一个邻接节点
    • 广度遍历是先把第一个作为参照物的节点,把所有与该节点有边关系的节点都先标识

标签:,遍历,int,访问,邻接,节点,isVisited
From: https://www.cnblogs.com/container-simple/p/16954439.html

相关文章