In [ ]:
################## jupyter lab header
################## scipy, sk-learn, plotly
# %matplotlib notebook
# %matplotlib ipympl
%matplotlib widget
from IPython.display import display
from matplotlib import cm, projections
from matplotlib import pyplot as plt
from mpl_toolkits import mplot3d
from mpl_toolkits.mplot3d import Axes3D
from pathlib import Path
import cv2
import glob
import numpy as np
import os
import pandas as pd
import PIL
import pprint
import random
import re
import tensorflow as tf
# import torch
# settings to display all columns
pd.set_option("display.max_columns", None)
# pd.set_option("display.max_rows", None)
load and parse dataset¶
data set source¶
MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges http://yann.lecun.com/exdb/mnist/
In [ ]:dirRoot = r"D:\data\ml\dataset\MNIST"
ff_images_test = "t10k-images-idx3-ubyte"
ff_labels_test = "t10k-labels-idx1-ubyte"
ff_images_train = "train-images-idx3-ubyte"
ff_labels_train = "train-labels-idx1-ubyte"
ff_images_test = os.path.join(dirRoot, ff_images_test)
ff_labels_test = os.path.join(dirRoot, ff_labels_test)
ff_images_train = os.path.join(dirRoot, ff_images_train)
ff_labels_train = os.path.join(dirRoot, ff_labels_train)
In [ ]:
# parse image data
def parse_image(ff):
image_cube = np.zeros((1,))
cnt = 0
rowN = 0
colN = 0
with open(ff, "rb") as file:
# print(type(file))
file.seek(4)
aa = file.read(4)
cnt = int.from_bytes(aa, "big")
aa = file.read(4)
rowN = int.from_bytes(aa, "big")
aa = file.read(4)
colN = int.from_bytes(aa, "big")
# print(cnt, rowN, colN)
aa = file.read(-1)
print(len(aa))
image_cube = np.array(np.frombuffer(aa, dtype=np.uint8))
image_cube = np.reshape(image_cube, [-1, rowN, colN])
print(image_cube.shape)
# fig = plt.figure("img_demo")
# plt.clf()
# for ii in range(8):
# plt.subplot(1, 8, ii+1)
# plt.imshow(train_image_cube[ii, :, :], cmap="gray")
# plt.show()
return image_cube
image_cube_train = parse_image(ff_images_train)
image_cube_test = parse_image(ff_images_test)
print("***************************")
print(image_cube_train.shape)
print(image_cube_test.shape)
47040000
(60000, 28, 28)
7840000
(10000, 28, 28)
***************************
(60000, 28, 28)
(10000, 28, 28)
In [ ]:
## parse label data
def parse_label(ff):
labels = np.zeros((1,))
with open(ff_labels_train, "rb") as file:
file.seek(4)
chunk = file.read(4)
label_cnt = int.from_bytes(chunk, "big")
# print(label_cnt)
chunk = file.read(-1)
labels = np.array(np.frombuffer(chunk, np.uint8))
print(labels[:40])
return labels
labels_train = parse_label(ff_labels_train)
labels_test = parse_label(ff_labels_test)
print("******************************")
print(labels_train.shape)
print(labels_test.shape)
[5 0 4 1 9 2 1 3 1 4 3 5 3 6 1 7 2 8 6 9 4 0 9 1 1 2 4 3 2 7 3 8 6 9 0 5 6
0 7 6]
[5 0 4 1 9 2 1 3 1 4 3 5 3 6 1 7 2 8 6 9 4 0 9 1 1 2 4 3 2 7 3 8 6 9 0 5 6
0 7 6]
******************************
(60000,)
(60000,)
model creation and training¶
In [ ]:# Training a neural network on MNIST with Keras | TensorFlow Datasets
# https://www.tensorflow.org/datasets/keras_example
# Training a neural network on MNIST with Keras | TensorFlow Datasets
# https://www.tensorflow.org/datasets/keras_example
# SparseCategoricalCrossentropy - Google Search
# https://www.google.com/search?q=SparseCategoricalCrossentropy
# tf.keras.losses.SparseCategoricalCrossentropy | TensorFlow v2.9.1
# https://www.tensorflow.org/api_docs/python/tf/keras/losses/SparseCategoricalCrossentropy
# tf.keras.Model | TensorFlow v2.9.1
# https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
# tf.keras.metrics.sparse_categorical_crossentropy | TensorFlow v2.9.1
# https://www.tensorflow.org/api_docs/python/tf/keras/metrics/sparse_categorical_crossentropy
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28,28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10),
])
model.compile(
optimizer=tf.keras.optimizers.Adam(0.001),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
)
# model.compile(
# optimizer=tf.keras.optimizers.Adam(0.001),
# loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
# metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
# )
model.fit(
x=image_cube_train,
y=labels_train,
batch_size=40000,
epochs=300
)
Epoch 1/300
2/2 [==============================] - 0s 7ms/step - loss: 183.9884 - sparse_categorical_accuracy: 0.1082
Epoch 2/300
2/2 [==============================] - 0s 8ms/step - loss: 78.6189 - sparse_categorical_accuracy: 0.2354
Epoch 3/300
2/2 [==============================] - 0s 8ms/step - loss: 52.0209 - sparse_categorical_accuracy: 0.4027
Epoch 4/300
2/2 [==============================] - 0s 8ms/step - loss: 39.2087 - sparse_categorical_accuracy: 0.5174
...
...
...
2/2 [==============================] - 0s 8ms/step - loss: 0.1588 - sparse_categorical_accuracy: 0.9861
Epoch 300/300
2/2 [==============================] - 0s 9ms/step - loss: 0.1574 - sparse_categorical_accuracy: 0.9863
Out[ ]:
<keras.callbacks.History at 0x2020b598e50>
freeze the model and export as pb file¶
Save, Load and Inference From TensorFlow 2.x Frozen Graph - Lei Mao's Log Book https://leimao.github.io/blog/Save-Load-Inference-From-TF2-Frozen-Graph/
How to export a TensorFlow 2.x Keras model to a frozen and optimized graph | by Sebastián García Acosta | Medium https://medium.com/@sebastingarcaacosta/how-to-export-a-tensorflow-2-x-keras-model-to-a-frozen-and-optimized-graph-39740846d9eb
In [ ]:from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
# Convert Keras model to ConcreteFunction
full_model = tf.function(lambda x: model(x))
full_model = full_model.get_concrete_function(
tf.TensorSpec(model.inputs[0].shape, model.inputs[0].dtype))
# Get frozen graph def
frozen_func = convert_variables_to_constants_v2(full_model)
frozen_func.graph.as_graph_def()
layers = [op.name for op in frozen_func.graph.get_operations()]
print("-" * 60)
print("Frozen model layers: ")
for layer in layers:
print(layer)
print("-" * 60)
print("Frozen model inputs: ")
print(frozen_func.inputs)
print("Frozen model outputs: ")
print(frozen_func.outputs)
# Then, serialize the frozen graph and its text representation to disk.
frozen_out_path = ""
frozen_graph_filename = "mlp_mnist"
tf.io.write_graph(graph_or_graph_def=frozen_func.graph,
logdir=frozen_out_path,
name=f"{frozen_graph_filename}.pb",
as_text=False)
tf.io.write_graph(graph_or_graph_def=frozen_func.graph,
logdir=frozen_out_path,
name=f"{frozen_graph_filename}.pbtxt",
as_text=True)
------------------------------------------------------------
Frozen model layers:
x
sequential_6/flatten_6/Const
sequential_6/flatten_6/Reshape
sequential_6/dense_12/MatMul/ReadVariableOp/resource
sequential_6/dense_12/MatMul/ReadVariableOp
sequential_6/dense_12/MatMul
sequential_6/dense_12/BiasAdd/ReadVariableOp/resource
sequential_6/dense_12/BiasAdd/ReadVariableOp
sequential_6/dense_12/BiasAdd
sequential_6/dense_12/Relu
sequential_6/dense_13/MatMul/ReadVariableOp/resource
sequential_6/dense_13/MatMul/ReadVariableOp
sequential_6/dense_13/MatMul
sequential_6/dense_13/BiasAdd/ReadVariableOp/resource
sequential_6/dense_13/BiasAdd/ReadVariableOp
sequential_6/dense_13/BiasAdd
NoOp
Identity
------------------------------------------------------------
Frozen model inputs:
[<tf.Tensor 'x:0' shape=(None, 28, 28) dtype=float32>]
Frozen model outputs:
[<tf.Tensor 'Identity:0' shape=(None, 10) dtype=float32>]
Out[ ]:
'mlp_mnist.pbtxt'
use the model with python¶
In [ ]:predi = model.predict(image_cube_train[:5,:,:])
print(type(predi))
print(predi.shape)
predi_cls = np.argmax(predi, axis=1)
print(predi_cls)
fig = plt.figure("show predi")
plt.clf()
for ii in range(5):
ax = plt.subplot(1, 5, ii + 1)
plt.imshow(image_cube_train[ii, :, :], cmap="gray")
ax.set_title(f"predi_{predi_cls[ii]}")
plt.show()
<class 'numpy.ndarray'>
(5, 10)
[5 0 4 1 9]
show predi
use the model with cpp¶
prepare the image file to be loaded in the cpp code.¶
img = image_cube_train[0, :, :]
cv2.imwrite("mnist_image.bmp", img)
the cpp code to predict the digit of the image is shown below.¶
my opencv version is 4.5.0
.
int run_tf_model()
{
//python - How to load the pre-trained model of the tensorflow by using the opencv dnn model - Stack Overflow
//https://stackoverflow.com/questions/50701410/how-to-load-the-pre-trained-model-of-the-tensorflow-by-using-the-opencv-dnn-mode
//C++ (Cpp)normAssert Examples - HotExamples
//https ://cpp.hotexamples.com/examples/-/-/normAssert/cpp-normassert-function-examples.html
//Mask RCNN in OpenCV - Deep learning based Object Detection and Instance Segmentation
// https ://learnopencv.com/deep-learning-based-object-detection-and-instance-segmentation-using-mask-rcnn-in-opencv-python-c/
cv::dnn::Net model = cv::dnn::readNetFromTensorflow("path_to_dir/mlp_mnist.pb");
cv::Mat img = cv::imread("path_to_dir/mnist_image.bmp", -1);
cv::Mat input_blob = cv::dnn::blobFromImage(img);
model.setInput(input_blob);
cv::Mat out = model.forward();
float theMax = out.at<float>(0, 0);
int maxIdx = 0;
int currentIdx = 0;
while (currentIdx < out.cols - 1)
{
currentIdx++;
float currentVal = out.at<float>(0, currentIdx);
if (currentVal > theMax)
{
theMax = currentVal;
maxIdx = currentIdx;
}
}
printf_s("the digit in the image is %d.\n", maxIdx);
return 0;
}
test¶
In [ ]:a = np.array([1, 2, 3], dtype=np.uint8)
bts = a.tobytes()
print(bts)
a = np.array(np.frombuffer(bts, dtype=np.uint8));
print(a)
b'\x01\x02\x03'
[1 2 3]
In [ ]:
标签:deploy,image,labels,tf,MLP,train,print,model
From: https://www.cnblogs.com/yusisc/p/16631370.html