首页 > 其他分享 >DataCollatorForTokenClassification

DataCollatorForTokenClassification

时间:2022-12-04 14:46:48浏览次数:39  
标签:return self labels label DataCollatorForTokenClassification length pad

目录

DataCollatorMixin类

class DataCollatorMixin:

    def __call__(self, features, return_tensors=None):
        if return_tensors is None:
            return_tensors = self.return_tensors
        if return_tensors == "pd":
            return self.paddle_call(features)
        elif return_tensors == "np":
            return self.numpy_call(features)
        else:
            raise ValueError(f"Framework '{return_tensors}' not recognized!")

DataCollatorForTokenClassification类

@dataclass
class DataCollatorForTokenClassification(DataCollatorMixin):
    """
    Data collator that will dynamically pad the inputs received, as well as the labels.
    Args:
        tokenizer ([`PretrainedTokenizer`] or [`PretrainedFasterTokenizer`]):
            The tokenizer used for encoding the data.
        padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
            Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
            among:
            - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
              is provided).
            - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
              acceptable input length for the model if that argument is not provided.
            - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
              lengths).
        max_length (`int`, *optional*):
            Maximum length of the returned list and optionally padding length (see above).
        pad_to_multiple_of (`int`, *optional*):
            If set will pad the sequence to a multiple of the provided value.
            This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
            7.5 (Volta).
        label_pad_token_id (`int`, *optional*, defaults to -100):
            The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
        return_tensors (`str`):
            The type of Tensor to return. Allowable values are "np", "pt" and "tf".
    """

    tokenizer: PretrainedTokenizerBase
    padding: Union[bool, str, PaddingStrategy] = True
    max_length: Optional[int] = None
    pad_to_multiple_of: Optional[int] = None
    label_pad_token_id: int = -100
    return_tensors: str = "pd"

    def paddle_call(self, features):
        label_name = "label" if "label" in features[0].keys() else "labels"
        labels = [feature[label_name] for feature in features
                  ] if label_name in features[0].keys() else None
        batch = self.tokenizer.pad(
            features,
            padding=self.padding,
            max_length=self.max_length,
            pad_to_multiple_of=self.pad_to_multiple_of,
            # Conversion to tensors will fail if we have labels as they are not of the same length yet.
            return_tensors="pd" if labels is None else None,
        )

        if labels is None:
            return batch

        sequence_length = paddle.to_tensor(batch["input_ids"]).shape[1]
        padding_side = self.tokenizer.padding_side
        if padding_side == "right":
            batch[label_name] = [
                list(label) + [self.label_pad_token_id] *
                (sequence_length - len(label)) for label in labels
            ]
        else:
            batch[label_name] = [[self.label_pad_token_id] *
                                 (sequence_length - len(label)) + list(label)
                                 for label in labels]

        batch = {
            k: paddle.to_tensor(v, dtype='int64')
            for k, v in batch.items()
        }
        return batch

    def numpy_call(self, features):
        label_name = "label" if "label" in features[0].keys() else "labels"
        labels = [feature[label_name] for feature in features
                  ] if label_name in features[0].keys() else None
        batch = self.tokenizer.pad(
            features,
            padding=self.padding,
            max_length=self.max_length,
            pad_to_multiple_of=self.pad_to_multiple_of,
            # Conversion to tensors will fail if we have labels as they are not of the same length yet.
            return_tensors="np" if labels is None else None,
        )

        if labels is None:
            return batch

        sequence_length = np.array(batch["input_ids"]).shape[1]
        padding_side = self.tokenizer.padding_side
        if padding_side == "right":
            batch["labels"] = [
                list(label) + [self.label_pad_token_id] *
                (sequence_length - len(label)) for label in labels
            ]
        else:
            batch["labels"] = [[self.label_pad_token_id] *
                               (sequence_length - len(label)) + list(label)
                               for label in labels]

        batch = {k: np.array(v, dtype=np.int64) for k, v in batch.items()}
        return batch

标签:return,self,labels,label,DataCollatorForTokenClassification,length,pad
From: https://www.cnblogs.com/zjuhaohaoxuexi/p/16949841.html

相关文章