The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens’ placement, where ‘Q’ and ‘.’ both indicate a queen and an empty space respectively.
class Solution {
public:
/**
* Get all distinct N-Queen solutions
* @param n: The number of queens
* @return: All distinct solutions
* For example, A string '...Q' shows a queen on forth position
*/
vector<vector<string> > res;
void dfs(vector<int> &solution,int n,int cur){
if(cur==n){
string str="";
for(int i=0;i<n;i++){
str+='.';
}
vector<string> vec;
for(int i=0;i<n;i++){
string tmp=str;
tmp[solution[i]]='Q';
vec.push_back(tmp);
}
res.push_back(vec);
return;
}
for(int i=0;i<n;i++){
solution.push_back(i);
bool ok=true;
for(int j=0;j<cur;j++){
if(i==solution[j]|| (cur+i)==(j+solution[j])|| (cur-i)==(j-solution[j])){
ok=false;
break;
}
}
if(ok){
dfs(solution,n,cur+1);
solution.pop_back();
}else{
solution.pop_back();
}
}
}
vector<vector<string> > solveNQueens(int n) {
// write your code here
vector<int> solution;
dfs(solution,n,0);
return res;
}
};